TC-GNN with Pytorch integration

Overview

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU)

  • Cite this project and paper.
@inproceedings{TC-GNN,
  title={TC-GNN: Accelerating Sparse Graph Neural Network Computation Via Dense Tensor Core on GPUs},
  author={Yuke Wang and Boyuan Feng and Yufei Ding},
  booktitle={Arxiv},
  year={2022}
}
  • Clone this project.
git clone [email protected]:YukeWang96/TCGNN-Pytorch.git
  • OS & Compiler:
  • Ubuntu 16.04+
  • gcc >= 7.5
  • cmake >= 3.14
  • CUDA >= 11.0 and nvcc >= 11.0

Files and Directories.

  • config.py: the configuration file for the shape of a TC block.
  • bench.py: the benchmark file for invoking main_tcgnn.py for various datasets and models.
  • main_tcgnn.py: the main entry for running TC-GNN.
  • count_TC_blocks.py: counting the total number of TC blocks without sparse-graph translation.
  • proc_prof.py: get the detailed GPU kernel metrics from the ncu csv output.
  • TCGNN_conv/: the directory for core TC-GNN implementations, including TCGNN_kernel.cu and TCGNN.cpp.

Environment Setup.

[Method-1] Install via Docker (Recommended).

  • Go to Docker/
  • Run ./build.sh
  • Run ./launch.sh

[Method-2] Install via Conda.

  • Install conda on system Toturial.
  • Create a conda environment:
conda create -n env_name python=3.6
  • Install Pytorch:
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge

or using pip [Note that make sure the pip you use is the pip from current conda environment. You can check this by which pip]

pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
conda install -c dglteam dgl-cuda11.0
pip install torch requests tqdm
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html
pip install torch-geometric

Install TC-GNN.

Go to TCGNN_conv/, then run

./build.sh

to install the TCGNN_conv modules with Pytorch binding. Note that this step is required for both Docker and Conda setup.

Download graph datasets.

Get the preprocessed datasets in .npy at here, then run

tar -zxvf tcgnn-ae-graphs.tar.gz

Running PyG baseline.

  • Go to pyg_baseline/ directory;
  • Pass the --model parameter in pyg_main.py with gcn and gin to profile the example GCN and GIN model, respectively;
  • ./0_bench.py| tee run_pyg.log to run the script and the report 10 epoch runtime for all evaluated datasets.
  • ./1_log2csv.py to convert the run_pyg.log to run_pyg.csv for ease of analysis.

Running DGL baseline.

  • Go to dgl_baseline/ directory
  • Pass the --model parameter in dgl_main.py with gcn and gin to profile the example GCN and GIN model, respectively;
  • ./0_bench.py| tee run_dgl.log to run the script and the report 10 epoch runtime for all evaluated datasets.
  • ./1_log2csv.py to convert the run_dgl.log to run_dgl.csv for ease of visualization.

Running TC-GNN.

  • Under the current project directory
  • ./0_bench.py| tee run_TCGNN.log to run the script and the report 10 epoch runtime for all evaluated datasets.
  • ./1_log2csv.py to convert the run_TCGNN.log to run_TCGNN.csv for ease of analysis.
You might also like...
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

Dahua Camera and Doorbell Home Assistant Integration
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Wafer Fault Detection using MlOps Integration
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Comments
  • Any docs about this project?

    Any docs about this project?

    Hi I came across this project and found the implementation is quite interesting. Is there any docs/paper that detail this project? Or you have any plan to release these kinds of information in the future?

    Thanks

    opened by mmmeee1111 1
Releases(v0.2)
Owner
YUKE WANG
https://wang-yuke.com
YUKE WANG
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022