Advances in Neural Information Processing Systems (NeurIPS), 2020.

Overview

What is being transferred in transfer learning?

This repo contains the code for the following paper:

Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*. What is being transferred in transfer learning?. *equal contribution. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Disclaimer: this is not an officially supported Google product.

Setup

Library dependencies

This code has the following dependencies

  • pytorch (1.4.0 is tested)
  • gin-config
  • tqdm
  • wget (the python package)

GPUs are needed to run most of the experiments.

Data

CheXpert data (the train and valid folders) needs to be placed in /mnt/data/CheXpert-v1.0-img224. If your data is in a different place, you can specify the data.image_path parameter (see configs/p100_chexpert.py). We pre-resized all the CheXpert images to reduce the burden of data pre-processing using the following script:

'" ../$NEWDIR/{} cd .. ">
#!/bin/bash

NEWDIR=CheXpert-v1.0-img224
mkdir -p $NEWDIR/{train,valid}

cd CheXpert-v1.0

echo "Prepare directory structure..."
find . -type d | parallel mkdir -p ../$NEWDIR/{}

echo "Resize all images to have at least 224 pixels on each side..."
find . -name "*.jpg" | parallel convert {} -resize "'224^>'" ../$NEWDIR/{}

cd ..

The DomainNet data will be automatically downloaded from the Internet upon first run. By default, it will download to /mnt/data, which can be changed with the data_dir config (see configs/p100_domain_net.py).

Common Experiments

Training jobs

CheXpert training from random init. We use 2 Nvidia V100 GPUs for CheXpert training. If you run into out-of-memory error, you can try to reduce the batch size.

CUDA_VISIBLE_DEVICES=0,1 python chexpert_train.py -k train/chexpert/fixup_resnet50_nzfc/randinit-lr0.1-bs256

CheXpert finetuning from ImageNet pre-trained checkpoint. The code tries to load the ImageNet pre-trained chexpoint from /mnt/data/logs/imagenet-lr01/ckpt-E090.pth.tar. Or you can customize the path to checkpoint (see configs/p100_chexpert.py).

CUDA_VISIBLE_DEVICES=0,1 python chexpert_train.py -k train/chexpert/fixup_resnet50_nzfc/finetune-lr0.02-bs256

Similarly, DomainNet training can be executed using the script imagenet_train.py (replace real with clipart and quickdraw to run on different domains).

# randinit
CUDA_VISIBLE_DEVICES=0 python imagenet_train.py -k train/DomainNet_real/fixup_resnet50_nzfc/randinit-lr0.1-MstepLR

# finetune
CUDA_VISIBLE_DEVICES=0 python imagenet_train.py -k train/DomainNet_real/fixup_resnet50_nzfc/finetune-lr0.02-MstepLR

Training with shuffled blocks

The training jobs with block-shuffled images are defined in configs/p200_pix_shuffle.py. Run

python -m configs pix_shuffle

To see the keys of all the training jobs with pixel shuffling. Similarly,

python -m configs blk7_shuffle

list all the jobs with 7x7 block-shuffled images. You can run any of those jobs using the -k command line argument. For example:

CUDA_VISIBLE_DEVICES=0 python imagenet_train.py \
    -k blk7_shuffle/DomainNet_quickdraw/fixup_resnet50_nzfc_noaug/randinit-lr0.1-MstepLR/seed0

Finetuning from different pre-training checkpoints

The config file configs/p200_finetune_ckpt.py defines training jobs that finetune from different ImageNet pre-training checkpoints along the pre-training optimization trajectory.

Linear interpolation between checkpoints (performance barrier)

The script ckpt_interpolation.py performs the experiment of linearly interpolating between different solutions. The file is self-contained. You can edit the file directly to specify which combinations of checkpoints are to be used. The command line argument -a compute and -a plot can be used to switch between doing the computation and making the plots based on computed results.

General Documentation

This codebase uses gin-config to customize the behavior of the program, and allows us to easily generate a large number of similar configurations with Python loops. This is especially useful for hyper-parameter sweeps.

Running a job

A script mainly takes a config key in the commandline, and it will pull the detailed configurations according to this key from the pre-defined configs. For example:

python3 imagenet_train.py -k train/cifar10/fixup_resnet50/finetune-lr0.02-MstepLR

Query pre-defined configs

You can list all the pre-defined config keys matching a given regex with the following command:

python3 -m configs 

For example:

$ python3 -m configs cifar10
2 configs found ====== with regex: cifar10
    0) train/cifar10/fixup_resnet50/randinit-lr0.1-MstepLR
    1) train/cifar10/fixup_resnet50/finetune-lr0.02-MstepLR

Defining new configs

All the configs are in the directory configs, with the naming convention pXXX_YYY.py. Here XXX are digits, which allows ordering between configs (so when defining configs we can reference and extend previously defined configs).

To add a new config file:

  1. create pXXX_YYY.py file.
  2. edit __init__.py to import this file.
  3. in the newly added file, define functions to registery new configs. All the functions with the name register_blah will be automatically called.

Customing new functions

To customize the behavior of a new function, make that function gin configurable by

@gin.configurable('config_name')
def my_func(arg1=gin.REQUIRED, arg2=0):
  # blah

Then in the pre-defined config files, you can specify the values by

spec['gin']['config_name.arg1'] = # whatever python objects
spec['gin']['config_name.arg2'] = 2

See gin-config for more details.

Owner
Google Research
Google Research
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Decoupled Low-light Image Enhancement Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2 1Key Laboratory of Knowledge Engineering with Big Data

17 Apr 25, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022