[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Related tags

Deep LearningTSA-Net
Overview

Tube Self-Attention Network (TSA-Net)

This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Quality Assessment (ACM-MM'21 Oral)

[arXiv] [supp] [slides] [poster] [video]

If this repository is helpful to you, please star it. If you find our work useful in your research, please consider citing:

@inproceedings{TSA-Net,
  title={TSA-Net: Tube Self-Attention Network for Action Quality Assessment},
  author={Wang, Shunli and Yang, Dingkang and Zhai, Peng and Chen, Chixiao and Zhang, Lihua},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021},
  pages={4902–4910},
  numpages={9}
}

User Guide

In this repository, we open source the code of TSA-Net on FR-FS dataset. The initialization process is as follows:

# 1.Clone this repository
git clone https://github.com/Shunli-Wang/TSA-Net.git ./TSA-Net
cd ./TSA-Net

# 2.Create conda env
conda create -n TSA-Net python
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

# 3.Download pre-trained model and FRFS dataset. All download links are listed as follow.
# PATH/TO/rgb_i3d_pretrained.pt 
# PATH/TO/FRFS 

# 4.Create data dir
mkdir ./data && cd ./data
mv PATH/TO/rgb_i3d_pretrained.pt ./
ln -s PATH/TO/FRFS ./FRFS

After initialization, please check the data structure:

.
├── data
│   ├── FRFS -> PATH/TO/FRFS
│   └── rgb_i3d_pretrained.pt
├── dataset.py
├── train.py
├── test.py
...

Download links:

Training & Evaluation

We provide the training and testing code of TSA-Net and Plain-Net. The difference between the two is whether the TSA module exists. This option is controlled by --TSA item.

python train.py --gpu 0 --model_path TSA-USDL --TSA
python test.py --gpu 0 --pt_w Exp/TSA-USDL/best.pth --TSA

python train.py --gpu 0 --model_path USDL
python test.py --gpu 0 --pt_w Exp/USDL/best.pth

Acknowledgement

Our code is adapted from MUSDL. We are very grateful for their wonderful implementation. All tracking boxes in our project are generated by SiamMask. We also sincerely thank them for their contributions.

Contact

If you have any questions about our work, please contact [email protected].

Owner
ShunliWang
ShunliWang
Source Code of NeurIPS21 paper: Recognizing Vector Graphics without Rasterization

YOLaT-VectorGraphicsRecognition This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without

Microsoft 49 Dec 20, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022