[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Related tags

Deep LearningTSA-Net
Overview

Tube Self-Attention Network (TSA-Net)

This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Quality Assessment (ACM-MM'21 Oral)

[arXiv] [supp] [slides] [poster] [video]

If this repository is helpful to you, please star it. If you find our work useful in your research, please consider citing:

@inproceedings{TSA-Net,
  title={TSA-Net: Tube Self-Attention Network for Action Quality Assessment},
  author={Wang, Shunli and Yang, Dingkang and Zhai, Peng and Chen, Chixiao and Zhang, Lihua},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021},
  pages={4902–4910},
  numpages={9}
}

User Guide

In this repository, we open source the code of TSA-Net on FR-FS dataset. The initialization process is as follows:

# 1.Clone this repository
git clone https://github.com/Shunli-Wang/TSA-Net.git ./TSA-Net
cd ./TSA-Net

# 2.Create conda env
conda create -n TSA-Net python
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

# 3.Download pre-trained model and FRFS dataset. All download links are listed as follow.
# PATH/TO/rgb_i3d_pretrained.pt 
# PATH/TO/FRFS 

# 4.Create data dir
mkdir ./data && cd ./data
mv PATH/TO/rgb_i3d_pretrained.pt ./
ln -s PATH/TO/FRFS ./FRFS

After initialization, please check the data structure:

.
├── data
│   ├── FRFS -> PATH/TO/FRFS
│   └── rgb_i3d_pretrained.pt
├── dataset.py
├── train.py
├── test.py
...

Download links:

Training & Evaluation

We provide the training and testing code of TSA-Net and Plain-Net. The difference between the two is whether the TSA module exists. This option is controlled by --TSA item.

python train.py --gpu 0 --model_path TSA-USDL --TSA
python test.py --gpu 0 --pt_w Exp/TSA-USDL/best.pth --TSA

python train.py --gpu 0 --model_path USDL
python test.py --gpu 0 --pt_w Exp/USDL/best.pth

Acknowledgement

Our code is adapted from MUSDL. We are very grateful for their wonderful implementation. All tracking boxes in our project are generated by SiamMask. We also sincerely thank them for their contributions.

Contact

If you have any questions about our work, please contact [email protected].

Owner
ShunliWang
ShunliWang
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022