PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

Overview

ExORL: Exploratory Data for Offline Reinforcement Learning

This is an original PyTorch implementation of the ExORL framework from

Don't Change the Algorithm, Change the Data: Exploratory Data for Offline Reinforcement Learning by

Denis Yarats*, David Brandfonbrener*, Hao Liu, Misha Laskin, Pieter Abbeel, Alessandro Lazaric, and Lerrel Pinto.

*Equal contribution.

Prerequisites

Install MuJoCo if it is not already the case:

  • Download MuJoCo binaries here.
  • Unzip the downloaded archive into ~/.mujoco/.
  • Append the MuJoCo subdirectory bin path into the env variable LD_LIBRARY_PATH.

Install the following libraries:

sudo apt update
sudo apt install libosmesa6-dev libgl1-mesa-glx libglfw3 unzip

Install dependencies:

conda env create -f conda_env.yml
conda activate exorl

Datasets

We provide exploratory datasets for 6 DeepMind Control Stuite domains

Domain Dataset name Available task names
Cartpole cartpole cartpole_balance, cartpole_balance_sparse, cartpole_swingup, cartpole_swingup_sparse
Cheetah cheetah cheetah_run, cheetah_run_backward
Jaco Arm jaco jaco_reach_top_left, jaco_reach_top_right, jaco_reach_bottom_left, jaco_reach_bottom_right
Point Mass Maze point_mass_maze point_mass_maze_reach_top_left, point_mass_maze_reach_top_right, point_mass_maze_reach_bottom_left, point_mass_maze_reach_bottom_right
Quadruped quadruped quadruped_walk, quadruped_run
Walker walker walker_stand, walker_walk, walker_run

For each domain we collected datasets by running 9 unsupervised RL algorithms from URLB for total of 10M steps. Here is the list of algorithms

Unsupervised RL method Name Paper
APS aps paper
APT(ICM) icm_apt paper
DIAYN diayn paper
Disagreement disagreement paper
ICM icm paper
ProtoRL proto paper
Random random N/A
RND rnd paper
SMM smm paper

You can download a dataset by running ./download.sh , for example to download ProtoRL dataset for Walker, run

./download.sh walker proto

The script will download the dataset from S3 and store it under datasets/walker/proto/, where you can find episodes (under buffer) and episode videos (under video).

Offline RL training

We also provide implementation of 5 offline RL algorithms for evaluating the datasets

Offline RL method Name Paper
Behavior Cloning bc paper
CQL cql paper
CRR crr paper
TD3+BC td3_bc paper
TD3 td3 paper

After downloading required datasets, you can evaluate it using offline RL methon for a specific task. For example, to evaluate a dataset collected by ProtoRL on Walker for the waling task using TD3+BC you can run

python train_offline.py agent=td3_bc expl_agent=proto task=walker_walk

Logs are stored in the output folder. To launch tensorboard run:

tensorboard --logdir output

Citation

If you use this repo in your research, please consider citing the paper as follows:

@article{yarats2022exorl,
  title={Don't Change the Algorithm, Change the Data: Exploratory Data for Offline Reinforcement Learning},
  author={Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric, Lerrel Pinto},
  journal={arXiv preprint arXiv:2201.13425},
  year={2022}
}

License

The majority of ExORL is licensed under the MIT license, however portions of the project are available under separate license terms: DeepMind is licensed under the Apache 2.0 license.

Owner
Denis Yarats
PhD student in AI at New York University and Facebook AI Research
Denis Yarats
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023