Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Overview

Progressive Transformers for End-to-End Sign Language Production

Source code for "Progressive Transformers for End-to-End Sign Language Production" (Ben Saunders, Necati Cihan Camgoz, Richard Bowden - ECCV 2020)

Conference video available at https://twitter.com/BenMSaunders/status/1336638886198521857

Usage

Install required packages using the requirements.txt file.

pip install -r requirements.txt

To run, start main.py with arguments "train" and ".\Configs\Base.yaml":

python __main__.py train ./Configs/Base.yaml

An example train.log file can be found in ".\Configs\train.log" and a validation file at ".\Configs\validations.txt"

Back Translation model created from https://github.com/neccam/slt. Back Translation evaluation code coming soon.

Data

Pre-processed Phoenix14T data can be requested via email at [email protected]. If you wish to create the data yourself, please follow below:

Phoenix14T data can be downloaded from https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/ and skeleton joints can be extracted using OpenPose at https://github.com/CMU-Perceptual-Computing-Lab/openpose and lifted to 3D using the 2D to 3D Inverse Kinematics code at https://github.com/gopeith/SignLanguageProcessing under 3DposeEstimator.

Prepare Phoenix14T (or other sign language dataset) data as .txt files for .skel, .gloss, .txt and .files. Data format should be parallel .txt files for "src", "trg" and "files", with each line representing a new sequence:

  • The "src" file contains source sentences, with each line representing new sentence.

  • The "trg" file contains skeleton data of each frame, with a space separating frames. The joints should be divided by 3 to match the scaling I used. Each frame contains 150 joint values and a subsequent counter value, all separated by a space. Each sequence should be separated with a new line. If your data contains 150 joints per frame, please ensure that trg_size is set to 150 in the config file.

  • The "files" file should contain the name of each sequence on a new line.

Examples can be found in /Data/tmp. Data path must be specified in config file.

Pre-Trained Model

A pre-trained Progressive Transformer checkpoint can be downloaded from https://www.dropbox.com/s/l4xmnybp7luz0l3/PreTrained_PTSLP_Model.ckpt?dl=0.

This model has a size of num_layers: 2, num_heads: 4 and embedding_dim: 512, as outlined in ./Configs/Base.yaml. It has been pre-trained on the full PHOENIX14T dataset with the data format as above. The relevant train.log and validations.txt files can be found in .\Configs.

To initialise a model from this checkpoint, pass the --ckpt ./PreTrained_PTSLP_Model.ckpt argument to either train or test modes. Additionally, to initialise the correct src_embed size, the config argument src_vocab: "./Configs/src_vocab.txt" must be set to the location of the src_vocab.txt, found under ./Configs. Please open an issue if this checkpoint cannot be downloaded or loaded.

Reference

If you use this code in your research, please cite the following papers:

@inproceedings{saunders2020progressive,
	title		=	{{Progressive Transformers for End-to-End Sign Language Production}},
	author		=	{Saunders, Ben and Camgoz, Necati Cihan and Bowden, Richard},
	booktitle   	=   	{Proceedings of the European Conference on Computer Vision (ECCV)},
	year		=	{2020}}

@inproceedings{saunders2020adversarial,
	title		=	{{Adversarial Training for Multi-Channel Sign Language Production}},
	author		=	{Saunders, Ben and Camgoz, Necati Cihan and Bowden, Richard},
	booktitle   	=   	{Proceedings of the British Machine Vision Conference (BMVC)},
	year		=	{2020}}

@inproceedings{saunders2021continuous,
	title		=	{{Continuous 3D Multi-Channel Sign Language Production via Progressive Transformers and Mixture Density Networks}},
	author		=	{Saunders, Ben and Camgoz, Necati Cihan and Bowden, Richard},
	booktitle   	=   	{International Journal of Computer Vision (IJCV)},
	year		=	{2021}}

Acknowledgements

This work received funding from the SNSF Sinergia project 'SMILE' (CRSII2 160811), the European Union's Horizon2020 research and innovation programme under grant agreement no. 762021 'Content4All' and the EPSRC project 'ExTOL' (EP/R03298X/1). This work reflects only the authors view and the Commission is not responsible for any use that may be made of the information it contains. We would also like to thank NVIDIA Corporation for their GPU grant.

Owner
PhD Student at University of Surrey Researching Sign Language Production with Computer Vision & Natural Language Processing
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022