Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Overview

Progressive Transformers for End-to-End Sign Language Production

Source code for "Progressive Transformers for End-to-End Sign Language Production" (Ben Saunders, Necati Cihan Camgoz, Richard Bowden - ECCV 2020)

Conference video available at https://twitter.com/BenMSaunders/status/1336638886198521857

Usage

Install required packages using the requirements.txt file.

pip install -r requirements.txt

To run, start main.py with arguments "train" and ".\Configs\Base.yaml":

python __main__.py train ./Configs/Base.yaml

An example train.log file can be found in ".\Configs\train.log" and a validation file at ".\Configs\validations.txt"

Back Translation model created from https://github.com/neccam/slt. Back Translation evaluation code coming soon.

Data

Pre-processed Phoenix14T data can be requested via email at [email protected]. If you wish to create the data yourself, please follow below:

Phoenix14T data can be downloaded from https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/ and skeleton joints can be extracted using OpenPose at https://github.com/CMU-Perceptual-Computing-Lab/openpose and lifted to 3D using the 2D to 3D Inverse Kinematics code at https://github.com/gopeith/SignLanguageProcessing under 3DposeEstimator.

Prepare Phoenix14T (or other sign language dataset) data as .txt files for .skel, .gloss, .txt and .files. Data format should be parallel .txt files for "src", "trg" and "files", with each line representing a new sequence:

  • The "src" file contains source sentences, with each line representing new sentence.

  • The "trg" file contains skeleton data of each frame, with a space separating frames. The joints should be divided by 3 to match the scaling I used. Each frame contains 150 joint values and a subsequent counter value, all separated by a space. Each sequence should be separated with a new line. If your data contains 150 joints per frame, please ensure that trg_size is set to 150 in the config file.

  • The "files" file should contain the name of each sequence on a new line.

Examples can be found in /Data/tmp. Data path must be specified in config file.

Pre-Trained Model

A pre-trained Progressive Transformer checkpoint can be downloaded from https://www.dropbox.com/s/l4xmnybp7luz0l3/PreTrained_PTSLP_Model.ckpt?dl=0.

This model has a size of num_layers: 2, num_heads: 4 and embedding_dim: 512, as outlined in ./Configs/Base.yaml. It has been pre-trained on the full PHOENIX14T dataset with the data format as above. The relevant train.log and validations.txt files can be found in .\Configs.

To initialise a model from this checkpoint, pass the --ckpt ./PreTrained_PTSLP_Model.ckpt argument to either train or test modes. Additionally, to initialise the correct src_embed size, the config argument src_vocab: "./Configs/src_vocab.txt" must be set to the location of the src_vocab.txt, found under ./Configs. Please open an issue if this checkpoint cannot be downloaded or loaded.

Reference

If you use this code in your research, please cite the following papers:

@inproceedings{saunders2020progressive,
	title		=	{{Progressive Transformers for End-to-End Sign Language Production}},
	author		=	{Saunders, Ben and Camgoz, Necati Cihan and Bowden, Richard},
	booktitle   	=   	{Proceedings of the European Conference on Computer Vision (ECCV)},
	year		=	{2020}}

@inproceedings{saunders2020adversarial,
	title		=	{{Adversarial Training for Multi-Channel Sign Language Production}},
	author		=	{Saunders, Ben and Camgoz, Necati Cihan and Bowden, Richard},
	booktitle   	=   	{Proceedings of the British Machine Vision Conference (BMVC)},
	year		=	{2020}}

@inproceedings{saunders2021continuous,
	title		=	{{Continuous 3D Multi-Channel Sign Language Production via Progressive Transformers and Mixture Density Networks}},
	author		=	{Saunders, Ben and Camgoz, Necati Cihan and Bowden, Richard},
	booktitle   	=   	{International Journal of Computer Vision (IJCV)},
	year		=	{2021}}

Acknowledgements

This work received funding from the SNSF Sinergia project 'SMILE' (CRSII2 160811), the European Union's Horizon2020 research and innovation programme under grant agreement no. 762021 'Content4All' and the EPSRC project 'ExTOL' (EP/R03298X/1). This work reflects only the authors view and the Commission is not responsible for any use that may be made of the information it contains. We would also like to thank NVIDIA Corporation for their GPU grant.

Owner
PhD Student at University of Surrey Researching Sign Language Production with Computer Vision & Natural Language Processing
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
MARE - Multi-Attribute Relation Extraction

MARE - Multi-Attribute Relation Extraction Repository for the paper submission: #TODO: insert link, when available Environment Tested with Ubuntu 18.0

0 May 11, 2021
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022