Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Related tags

Deep LearningVE-PCN
Overview

Voxel-based Network for Shape Completion by Leveraging Edge Generation

This is the PyTorch implementation for the paper "Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)"

Getting Started

python version: python-3.6; cuda version: cuda-10; PyTorch version: 1.5

Compile Customized Operators

Build operators under ops by using python setup.py install.

Datasets

Our dataset PCN's dataset TopNet's dataset

Train the model

To train the models on pcn dataset: python train_edge.py
--train_pcn;
--loss_type: pcn;
--train_path: the training data;
--eval_path: the validation data;
--n_gt_points: 16384;
--n_out_points: 16384;
--density_weight:1e11;
--dense_cls_weight:1000;
--p_norm_weight:0;
--dist_regularize_weight:0;
--chamfer_weight:1e6;
--lr 0.0007.

To train the models on topnet dataset: python train_edge.py
--train_pcn;
--loss_type: topnet;
--train_path: the training data;
--eval_path: the validation data;
--n_gt_points: 2048;
--n_out_points: 2048;
--density_weight:1e10;
--dense_cls_weight:100;
--p_norm_weight:300;
--dist_regularize_weight:0.3;
--chamfer_weight:1e4;
--augment;
--lr 0.0007.

To train the models on our dataset: python train_edge.py
--train_seen;
--loss_type: topnet;
--h5_train: the training data;
--h5_val: the validation data;
--n_gt_points: 2048;
--n_out_points: 2048;
--density_weight:1e10;
--dense_cls_weight:100;
--p_norm_weight:300;
--dist_regularize_weight:0.3;
--chamfer_weight:1e4;
--lr 0.0007.

Evaluate the models

The pre-trained models can be downloaded here: Models, unzip and put them in the root directory.
To evaluate models: python test_edge.py
--loss_type: topnet or pcn;
--eval_path: the test data from different cases;
--checkpoint: the pre-trained models;
--num_gt_points: the resolution of ground truth point clouds.

Citation

@inproceedings{wang2021voxel,
     author = {Wang, Xiaogang and , Marcelo H. Ang Jr. and Lee, Gim Hee},
     title = {Voxel-based Network for Shape Completion by Leveraging Edge Generation},
     booktitle = {ICCV)},
     year = {2021},
}

Acknowledgements

Our implementations use the code from the following repository:
Chamferdistance
PointNet++
convolutional_point_cloud_decoder

Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021