The fastest way to visualize GradCAM with your Keras models.

Overview

VizGradCAM

VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models and may serve as an important step in ensuring that engineers observe the regions that contributed to certain inference results.

Most tutorials or function features similar methods but requires the name of the last convolutional layer, performing the upscaling of heatmap and superimposing it on the original image. In this repository, we aim to combine all of those tasks.

Usage

This function can be imported or simply copied out into your script where required. Specific usage can be found in the sample Jupyter Notebook.

"""
Function Parameters:
    model        : Compiled Model with Weights Loaded
    image        : Image to Perform Inference On 
    plot_results : True - Function Plots using PLT
                   False - Returns Heatmap Array
    interpolant  : Interpolant Value that Describes The Superimposition Ratio
                   Between Image and Heatmap
"""
VizGradCAM(model, image, plot_results=True, interpolant=0.5)

Sample Usage

# Import Function
from gradcam import VizGradCAM

# Load Your Favourite Image
test_img = img_to_array(load_img("monkey.jpeg" , target_size=(224,224)))

# Use The Function - Boom!
VizGradCAM(EfficientNetB4(weights="imagenet"), test_img))

Results

plot_results=True plot_results=False

More Information

This function is inspired by Keras' GradCAM tuturial here and the original paper, Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization can be found here.

Tested / Supported Models

This function works with Keras CNN models and most Keras Applications / Based Models. This means that it will work even if you used include_top=False to add your own final dense layers for transfer learning on some of the models listed below. In GradCAM, we are looking to target gradients flowing into the last convolutional layer.

Model Architecture Support Dimension
VGG16 (224,224)
VGG19 (224,224)
DenseNet121 (224,224)
DenseNet169 (224,224)
ResNet50 (224,224)
ResNet101 (224,224)
ResNet152 (224,224)
ResNet50V2 (224,224)
ResNet101V2 (224,224)
ResNet152V2 (224,224)
MobileNet (224,224)
MobileNetV2 (224,224)
Xception (299,299)
InceptionV3 (299,299)
InceptionResNetV2 (299,299)
EfficientNetB0 (224,224)
EfficientNetB1 (240,240)
EfficientNetB2 (260,260)
EfficientNetB3 (300,300)
EfficientNetB4 (380,380)
EfficientNetB5 (456,456)
EfficientNetB6 (528,528)
EfficientNetB7 (600,600)
Owner
Curious Human
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
Teaching end to end workflow of deep learning

Deep-Education This repository is now available for public use for teaching end to end workflow of deep learning. This implies that learners/researche

Data Lab at College of William and Mary 2 Sep 26, 2022
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022