As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

Overview

HAKE-Action

HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It includes reproduced SOTA models and their HAKE-enhanced versions. HAKE-Action is authored by Yong-Lu Li, Xinpeng Liu, Liang Xu, Cewu Lu. Currently, it is manintained by Yong-Lu Li, Xinpeng Liu and Liang Xu.

News: (2021.10.06) Our extended version of SymNet is accepted by TPAMI! Paper and code are coming soon.

(2021.2.7) Upgraded HAKE-Activity2Vec is released! Images/Videos --> human box + ID + skeleton + part states + action + representation. [Description]

Full demo: [YouTube], [bilibili]

(2021.1.15) Our extended version of TIN (Transferable Interactiveness Network) is accepted by TPAMI! New paper and code will be released soon.

(2020.10.27) The code of IDN (Paper) in NeurIPS'20 is released!

(2020.6.16) Our larger version HAKE-Large (>120K images, activity and part state labels) is released!

We released the HAKE-HICO (image-level part state labels upon HICO) and HAKE-HICO-DET (instance-level part state labels upon HICO-DET). The corresponding data can be found here: HAKE Data.

  • Paper is here.
  • More data and part states (e.g., upon AVA, more kinds of action categories, more rare actions...) are coming.
  • We will keep updating HAKE-Action to include more SOTA models and their HAKE-enhanced versions.

Data Mode

  • HAKE-HICO (PaStaNet* mode in paper): image-level, add the aggression of all part states in an image (belong to one or multiple active persons), compared with original HICO, the only additional labels are image-level human body part states.

  • HAKE-HICO-DET (PaStaNet* in paper): instance-level, add part states for each annotated persons of all images in HICO-DET, the only additional labels are instance-level human body part states.

  • HAKE-Large (PaStaNet in paper): contains more than 120K images, action labels and the corresponding part state labels. The images come from the existing action datasets and crowdsourcing. We mannully annotated all the active persons with our novel part-level semantics.

  • GT-HAKE (GT-PaStaNet* in paper): GT-HAKE-HICO and G-HAKE-HICO-DET. It means that we use the part state labels as the part state prediction. That is, we can perfectly estimate the body part states of a person. Then we use them to infer the instance activities. This mode can be seen as the upper bound of our HAKE-Action. From the results below we can find that, the upper bound is far beyond the SOTA performance. Thus, except for the current study on the conventional instance-level method, continue promoting part-level method based on HAKE would be a very promising direction.

Notion

Activity2Vec and PaSta-R are our part state based modules, which operate action inference based on part semantics, different from previous instance semantics. For example, Pairwise + HAKE-HICO pre-trained Activity2Vec + Linear PaSta-R (the seventh row) achieves 45.9 mAP on HICO. More details can be found in our CVPR2020 paper: PaStaNet: Toward Human Activity Knowledge Engine.

Code

The two versions of HAKE-Action are relesased in two branches of this repo:

Models on HICO

Instance-level +Activity2Vec +PaSta-R mAP [email protected] [email protected] [email protected]
R*CNN - - 28.5 - - -
Girdhar et.al. - - 34.6 - - -
Mallya et.al. - - 36.1 - - -
Pairwise - - 39.9 13.0 19.8 22.3
- HAKE-HICO Linear 44.5 26.9 30.0 30.7
Mallya et.al. HAKE-HICO Linear 45.0 26.5 29.1 30.3
Pairwise HAKE-HICO Linear 45.9 26.2 30.6 31.8
Pairwise HAKE-HICO MLP 45.6 26.0 30.8 31.9
Pairwise HAKE-HICO GCN 45.6 25.2 30.0 31.4
Pairwise HAKE-HICO Seq 45.9 25.3 30.2 31.6
Pairwise HAKE-HICO Tree 45.8 24.9 30.3 31.8
Pairwise HAKE-Large Linear 46.3 24.7 31.8 33.1
Pairwise HAKE-Large Linear 46.3 24.7 31.8 33.1
Pairwise GT-HAKE-HICO Linear 65.6 47.5 55.4 56.6

Models on HICO-DET

Using Object Detections from iCAN

Instance-level +Activity2Vec +PaSta-R Full(def) Rare(def) None-Rare(def) Full(ko) Rare(ko) None-Rare(ko)
iCAN - - 14.84 10.45 16.15 16.26 11.33 17.73
TIN - - 17.03 13.42 18.11 19.17 15.51 20.26
iCAN HAKE-HICO-DET Linear 19.61 17.29 20.30 22.10 20.46 22.59
TIN HAKE-HICO-DET Linear 22.12 20.19 22.69 24.06 22.19 24.62
TIN HAKE-Large Linear 22.65 21.17 23.09 24.53 23.00 24.99
TIN GT-HAKE-HICO-DET Linear 34.86 42.83 32.48 35.59 42.94 33.40

Models on AVA (Frame-based)

Method +Activity2Vec +PaSta-R mAP
AVA-TF-Baseline - - 11.4
LFB-Res-50-baseline - - 22.2
LFB-Res-101-baseline - - 23.3
AVA-TF-Baeline HAKE-Large Linear 15.6
LFB-Res-50-baseline HAKE-Large Linear 23.4
LFB-Res-101-baseline HAKE-Large Linear 24.3

Models on V-COCO

Method +Activity2Vec +PaSta-R AP(role), Scenario 1 AP(role), Scenario 2
iCAN - - 45.3 52.4
TIN - - 47.8 54.2
iCAN HAKE-Large Linear 49.2 55.6
TIN HAKE-Large Linear 51.0 57.5

Training Details

We first pre-train the Activity2Vec and PaSta-R with activities and PaSta labels. Then we change the last FC in PaSta-R to fit the activity categories of the target dataset. Finally, we freeze Activity2Vec and fine-tune PaSta-R on the train set of the target dataset. Here, HAKE works like the ImageNet and Activity2Vec is used as a pre-trained knowledge engine to promote other tasks.

Citation

If you find our work useful, please consider citing:

@inproceedings{li2020pastanet,
  title={PaStaNet: Toward Human Activity Knowledge Engine},
  author={Li, Yong-Lu and Xu, Liang and Liu, Xinpeng and Huang, Xijie and Xu, Yue and Wang, Shiyi and Fang, Hao-Shu and Ma, Ze and Chen, Mingyang and Lu, Cewu},
  booktitle={CVPR},
  year={2020}
}
@inproceedings{li2019transferable,
  title={Transferable Interactiveness Knowledge for Human-Object Interaction Detection},
  author={Li, Yong-Lu and Zhou, Siyuan and Huang, Xijie and Xu, Liang and Ma, Ze and Fang, Hao-Shu and Wang, Yanfeng and Lu, Cewu},
  booktitle={CVPR},
  year={2019}
}
@inproceedings{lu2018beyond,
  title={Beyond holistic object recognition: Enriching image understanding with part states},
  author={Lu, Cewu and Su, Hao and Li, Yonglu and Lu, Yongyi and Yi, Li and Tang, Chi-Keung and Guibas, Leonidas J},
  booktitle={CVPR},
  year={2018}
}

HAKE

HAKE[website] is a new large-scale knowledge base and engine for human activity understanding. HAKE provides elaborate and abundant body part state labels for active human instances in a large scale of images and videos. With HAKE, we boost the action understanding performance on widely-used human activity benchmarks. Now we are still enlarging and enriching it, and looking forward to working with outstanding researchers around the world on its applications and further improvements. If you have any pieces of advice or interests, please feel free to contact Yong-Lu Li ([email protected]).

If you get any problems or if you find any bugs, don't hesitate to comment on GitHub or make a pull request!

HAKE-Action is freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please drop an e-mail. We will send the detail agreement to you.

Owner
Yong-Lu Li
Ph.D. CV_Robotics
Yong-Lu Li
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022