As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

Overview

HAKE-Action

HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It includes reproduced SOTA models and their HAKE-enhanced versions. HAKE-Action is authored by Yong-Lu Li, Xinpeng Liu, Liang Xu, Cewu Lu. Currently, it is manintained by Yong-Lu Li, Xinpeng Liu and Liang Xu.

News: (2021.10.06) Our extended version of SymNet is accepted by TPAMI! Paper and code are coming soon.

(2021.2.7) Upgraded HAKE-Activity2Vec is released! Images/Videos --> human box + ID + skeleton + part states + action + representation. [Description]

Full demo: [YouTube], [bilibili]

(2021.1.15) Our extended version of TIN (Transferable Interactiveness Network) is accepted by TPAMI! New paper and code will be released soon.

(2020.10.27) The code of IDN (Paper) in NeurIPS'20 is released!

(2020.6.16) Our larger version HAKE-Large (>120K images, activity and part state labels) is released!

We released the HAKE-HICO (image-level part state labels upon HICO) and HAKE-HICO-DET (instance-level part state labels upon HICO-DET). The corresponding data can be found here: HAKE Data.

  • Paper is here.
  • More data and part states (e.g., upon AVA, more kinds of action categories, more rare actions...) are coming.
  • We will keep updating HAKE-Action to include more SOTA models and their HAKE-enhanced versions.

Data Mode

  • HAKE-HICO (PaStaNet* mode in paper): image-level, add the aggression of all part states in an image (belong to one or multiple active persons), compared with original HICO, the only additional labels are image-level human body part states.

  • HAKE-HICO-DET (PaStaNet* in paper): instance-level, add part states for each annotated persons of all images in HICO-DET, the only additional labels are instance-level human body part states.

  • HAKE-Large (PaStaNet in paper): contains more than 120K images, action labels and the corresponding part state labels. The images come from the existing action datasets and crowdsourcing. We mannully annotated all the active persons with our novel part-level semantics.

  • GT-HAKE (GT-PaStaNet* in paper): GT-HAKE-HICO and G-HAKE-HICO-DET. It means that we use the part state labels as the part state prediction. That is, we can perfectly estimate the body part states of a person. Then we use them to infer the instance activities. This mode can be seen as the upper bound of our HAKE-Action. From the results below we can find that, the upper bound is far beyond the SOTA performance. Thus, except for the current study on the conventional instance-level method, continue promoting part-level method based on HAKE would be a very promising direction.

Notion

Activity2Vec and PaSta-R are our part state based modules, which operate action inference based on part semantics, different from previous instance semantics. For example, Pairwise + HAKE-HICO pre-trained Activity2Vec + Linear PaSta-R (the seventh row) achieves 45.9 mAP on HICO. More details can be found in our CVPR2020 paper: PaStaNet: Toward Human Activity Knowledge Engine.

Code

The two versions of HAKE-Action are relesased in two branches of this repo:

Models on HICO

Instance-level +Activity2Vec +PaSta-R mAP [email protected] [email protected] [email protected]
R*CNN - - 28.5 - - -
Girdhar et.al. - - 34.6 - - -
Mallya et.al. - - 36.1 - - -
Pairwise - - 39.9 13.0 19.8 22.3
- HAKE-HICO Linear 44.5 26.9 30.0 30.7
Mallya et.al. HAKE-HICO Linear 45.0 26.5 29.1 30.3
Pairwise HAKE-HICO Linear 45.9 26.2 30.6 31.8
Pairwise HAKE-HICO MLP 45.6 26.0 30.8 31.9
Pairwise HAKE-HICO GCN 45.6 25.2 30.0 31.4
Pairwise HAKE-HICO Seq 45.9 25.3 30.2 31.6
Pairwise HAKE-HICO Tree 45.8 24.9 30.3 31.8
Pairwise HAKE-Large Linear 46.3 24.7 31.8 33.1
Pairwise HAKE-Large Linear 46.3 24.7 31.8 33.1
Pairwise GT-HAKE-HICO Linear 65.6 47.5 55.4 56.6

Models on HICO-DET

Using Object Detections from iCAN

Instance-level +Activity2Vec +PaSta-R Full(def) Rare(def) None-Rare(def) Full(ko) Rare(ko) None-Rare(ko)
iCAN - - 14.84 10.45 16.15 16.26 11.33 17.73
TIN - - 17.03 13.42 18.11 19.17 15.51 20.26
iCAN HAKE-HICO-DET Linear 19.61 17.29 20.30 22.10 20.46 22.59
TIN HAKE-HICO-DET Linear 22.12 20.19 22.69 24.06 22.19 24.62
TIN HAKE-Large Linear 22.65 21.17 23.09 24.53 23.00 24.99
TIN GT-HAKE-HICO-DET Linear 34.86 42.83 32.48 35.59 42.94 33.40

Models on AVA (Frame-based)

Method +Activity2Vec +PaSta-R mAP
AVA-TF-Baseline - - 11.4
LFB-Res-50-baseline - - 22.2
LFB-Res-101-baseline - - 23.3
AVA-TF-Baeline HAKE-Large Linear 15.6
LFB-Res-50-baseline HAKE-Large Linear 23.4
LFB-Res-101-baseline HAKE-Large Linear 24.3

Models on V-COCO

Method +Activity2Vec +PaSta-R AP(role), Scenario 1 AP(role), Scenario 2
iCAN - - 45.3 52.4
TIN - - 47.8 54.2
iCAN HAKE-Large Linear 49.2 55.6
TIN HAKE-Large Linear 51.0 57.5

Training Details

We first pre-train the Activity2Vec and PaSta-R with activities and PaSta labels. Then we change the last FC in PaSta-R to fit the activity categories of the target dataset. Finally, we freeze Activity2Vec and fine-tune PaSta-R on the train set of the target dataset. Here, HAKE works like the ImageNet and Activity2Vec is used as a pre-trained knowledge engine to promote other tasks.

Citation

If you find our work useful, please consider citing:

@inproceedings{li2020pastanet,
  title={PaStaNet: Toward Human Activity Knowledge Engine},
  author={Li, Yong-Lu and Xu, Liang and Liu, Xinpeng and Huang, Xijie and Xu, Yue and Wang, Shiyi and Fang, Hao-Shu and Ma, Ze and Chen, Mingyang and Lu, Cewu},
  booktitle={CVPR},
  year={2020}
}
@inproceedings{li2019transferable,
  title={Transferable Interactiveness Knowledge for Human-Object Interaction Detection},
  author={Li, Yong-Lu and Zhou, Siyuan and Huang, Xijie and Xu, Liang and Ma, Ze and Fang, Hao-Shu and Wang, Yanfeng and Lu, Cewu},
  booktitle={CVPR},
  year={2019}
}
@inproceedings{lu2018beyond,
  title={Beyond holistic object recognition: Enriching image understanding with part states},
  author={Lu, Cewu and Su, Hao and Li, Yonglu and Lu, Yongyi and Yi, Li and Tang, Chi-Keung and Guibas, Leonidas J},
  booktitle={CVPR},
  year={2018}
}

HAKE

HAKE[website] is a new large-scale knowledge base and engine for human activity understanding. HAKE provides elaborate and abundant body part state labels for active human instances in a large scale of images and videos. With HAKE, we boost the action understanding performance on widely-used human activity benchmarks. Now we are still enlarging and enriching it, and looking forward to working with outstanding researchers around the world on its applications and further improvements. If you have any pieces of advice or interests, please feel free to contact Yong-Lu Li ([email protected]).

If you get any problems or if you find any bugs, don't hesitate to comment on GitHub or make a pull request!

HAKE-Action is freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please drop an e-mail. We will send the detail agreement to you.

Owner
Yong-Lu Li
Ph.D. CV_Robotics
Yong-Lu Li
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022