This is a model made out of Neural Network specifically a Convolutional Neural Network model

Overview

Hand Written Digits Recognizer

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.

Table of contents:

  1. Importing Libraries

  2. Loading the data

  3. Making the model

  4. Compiling and training the model

  5. Evaluating the model

  6. Testing the model by doing predictions!!

  7. How can you try this data on your custom input?

                             

Importing Libraries

Modules used in creating this model are numpy , os , matplotlib , tensorflow , keras , cv2

import os
import cv2
import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from keras.layers import Dense,Flatten,Conv2D, MaxPooling2D

Loading the data

Mnist, a built-in dataset from keras, is used for this model.

mnist = tf.keras.datasets.mnist

                                    (image Source: Kaggle.com)

The data is actually loaded in the form of a numpy array. The entire image is 28x28 pixels in size. When we plot it with matplotlib, we get this image.

The data is being divided into train labels, train images, test labels, and test images.

(train_x,train_y),(test_x,test_y) = mnist.load_data()

Now, the colours in this image are divided into three channels, and we don't need to extract their attributes based on colour, from the image. Our model will focus on the archs and lines used in their creation. Furthermore, any image that we consider is presented in the RGB(0-255) by default to our model. To be more specific ,according to the activation of each pixel in the image, the numpy array has values ranging from 0-255. As a result, our model takes a long time to analyse. So to tackel this, we will noramlize the matrix and then extract the featurse to feed our model. which will require less time to master. As a result, once we've normalised our data, our model will see the image as

Our image is now an array with values ranging from 0 to 1, which is a smart thing to do before feeding it to our model. Now apply the same logic to our entire 60,000-image dataset.

Before normalization:

After normalization:

Now that we have our data, all we need to do is create a model to feed it. to anticipate our next inputs.

Making the Model

Now, one of the most important aspects of our model to consider is the layers and how they are organised. So, for my model, I utilised three convolutional layers and a maxpooling layer after each one. After that, I flattened the convolutional model and connected it to the Fully Connected layer.

The below image is the summary of The model .

To comprehend the CNN employed in this model The following photograph, which I obtained after a lot of online surfing, will be useful.!

( Image credits: analyticsindiamag.com )

The image above shows a standard Convolution layer, and the white boxes around the feature map are our image padding, which is usually not required in a model. So that's why I've ruled it out as well.

Compiling and Training Our Model

Now that we've finished building our model, it's time to teach it the numbers. People in this world are incredibly lethargic when it comes to maintaining a decent handwriting. So that's why ,we need to teach the model the most possible methods to write a digit T_T.

This isn't a one-time activity where our model will understand how things operate soon after we show it all the images. Even ,we humans need need some revisions in order to remember things. Similarly, our model must be taught the photos several times, which is referred to as Epochs in deep learning. The greater the number of epochs, the lower the loss while forecasting the image.

Always keep in mind that a NN strives to minimise the loss for each epoch; it does not increase accuracy; rather, it reduces losses, which increases accuracy.

Now , to complie our model we are using adam optimizer

model.compile(
loss = 'sparse_categorical_crossentropy',
optimizer= 'adam',
metrics = ['accuracy']
)

while feeding our model i've used 5 epochs and validated the data with a split of 30% of the training data. we don't want overfitting cases to our data so that's why i choose 5, which is pretty decent regarding my model.

model.fit(
train_x_r,train_y,
epochs = 5,
validation_split = 0.3
)

Evaluating the Model

I obtained 98.12 percent accuracy with a loss of 0.069 while evaluating this model, which is a very good result for a CNN model. but i'll surely be working on 'decreasing the loss' ( you know what i mean!!).

Predicting the digits using our model

testing the model with the prbuilt test dataset provied

Lets demonstrate the model, now lets take a label from our test labels lets say, 63.

Now lets see the coorresponding image in test_x which contains the image arrays of the hand written numbers.

Now here is the prediction time! let's see what our model predicts

Here, 'p' is the array which contains all the predictions of the test images, and p[63] is the predicted label for test_y[63] image. Hope this completely makes sense.

Overview of the Model

Finally, it takes the image as input, normalises the image array, predicts all the likelihoods of being each digit using the softmax expression, and finally, this model returns the argumental maximun of that prediction array for that image.

How can you try this data on your custom input?

Well here comes the exiting part, for this version of model all you need is the path of the image. and just follow these three simple steps.

PS: clone it, or download the zip, which ever method you find relevant and then strat following the below steps


Step-1:-

draw you digit in you local machine using any simple art tool! how much time its gonna take tho. just make sure you draw the digit with a lighter shade on a darker background to get more accurate result. what i mean is

                        (fig - 1)                                        (fig-2)

in the above figures fig-1 will give more accurate results than fig-2.

Step-2:-

Copy the path to where you saved the image in any format you want (png, jpg, etc.). It will be easier if you save the image in the same folder as the 'hands-on.py' script.

Step-3:-

run the hands-on.py script and paste your image-path over there and TADA! you're job is done. all you need to check is the result and praise the model and most importantly star this repo staright after that 🌚 !


Trail

This is the procedure that must be followed. So I used MS Paint to create this digit. and this is how it appears (please don't judge!! :-))

                (eight.png)

and now lets run the program hands-on.py and here's how it works

And that's how it ends!

If any necessary commits are required to increase the elegance of this model! i'm always open for a PR.

Happy coding! i🖖🏾

Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021