Fast Neural Representations for Direct Volume Rendering

Related tags

Deep LearningfV-SRN
Overview

Fast Neural Representations for Direct Volume Rendering

Teaser

Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann

This repository contains the code and settings to reproduce all figures (and more) from the paper. https://arxiv.org/abs/2112.01579

Jump to

How to train a new network

How to reproduce the figures

Video

Watch the video

Requirements

  • NVIDIA GPU with RTX, e.g. RTX20xx or RTX30xx (we use an RTX2070)
  • CUDA 11
  • OpenGL with GLFW and GLM
  • Python 3.8 or higher, see applications/env.txt for the required packages

Tested systems:

  • Windows 10, Visual Studio 2019, CUDA 11.1, Python 3.9, PyTorch 1.9
  • Ubuntu 20.04, gcc 9.3.0, CUDA 11.1, Python 3.8, PyTorch 1.8

Installation / Project structure

The project consists of a C++/CUDA part that has to be compiled first:

  • renderer: the renderer static library, see below for noteworthy files. Files ending in .cuh and .cu are CUDA kernel files.
  • bindings: entry point to the Python bindings, after compilation leads to a python extension module pyrenderer, placed in bin
  • gui: the interactive GUI to design the config files, explore the reference datasets and the trained networks. Requires OpenGL

For compilation, we recommend CMake. For running on a headless server, specifiy -DRENDERER_BUILD_OPENGL_SUPPORT=Off -DRENDERER_BUILD_GUI=Off. Alternatively, compile-library-server.sh is provided for compilation with the built-in extension compiler of PyTorch. We use this for compilation on our headless GPU server, as it simplifies potential wrong dependencies to different CUDA, Python or PyTorch versions with different virtualenvs or conda environments.

After compiling the C++ library, the network training and evaluation is performed in Python. The python files are all found in applications:

  • applications/volumes the volumes used in the ablation studies
  • applicatiosn/config-files the config files
  • applications/common: common utilities, especially utils.py for loading the pyrenderer library and other helpers
  • applications/losses: the loss functions, including SSIM and LPIPS
  • applications/volnet: the main network code for training in inference, see below.

Noteworthy Files

Here we list and explain noteworthy files that contain important aspects of the presented method

On the side of the C++/CUDA library in renderer/ are the following files important. Note that for the various modules, multiple implementations exists, e.g. for the TF. Therefore, the CUDA-kernels are assembled on-demand using NVRTC runtime compilation.

  • Image evaluators (iimage_evaluator.h), the entry point to the renderer. Only one implementation:

    • image_evaluator_simple.h, renderer_image_evaluator_simple.cuh: Contains the loop over the pixels and generates the rays -- possibly multisampled for Monte Carlo -- from the camera
  • Ray evaluators (iray_evaluation.h), called per ray and returns the colors. They call the volume implementation to fetch the density

    • ray_evaluation_stepping.h, renderer_ray_evaluation_stepping_iso.cuh, renderer_ray_evaluation_stepping_dvr.cuh: constant stepping for isosurfaces and DVR.
    • ray_evaluation_monte_carlo.h Monte Carlo path tracing with multiple bounces, delta tracking and various phase functions
  • Volume interpolations (volume_interpolation.h). On the CUDA-side, implementations provide a functor that evaluates a position and returns the density or color at that point

    • Grid interpolation (volume_interpolation_grid.h), trilinear interpolation into a voxel grid stored in volume.h.
    • Scene Reconstruction Networks (volume_interpolation_network.h). The SRNs as presented in the paper. See the header for the binary format of the .volnet file. The proposed tensor core implementation (Sec. 4.1) can be found in renderer_volume_tensorcores.cuh

On the python side in applications/volnet/, the following files are important:

  • train_volnet: the entry point for training
  • inference.py: the entry point for inference, used in the scripts for evaluation. Also converts trained models into the binary format for the GUI
  • network.py: The SRN network specification
  • input_data.py: The loader of the input grids, possibly time-dependent
  • training_data.py: world- and screen-space data loaders, contains routines for importance sampling / adaptive resampling. The rejection sampling is implemented in CUDA for performance and called from here
  • raytracing.py: Differentiable raytracing in PyTorch, including the memory optimization from Weiss&Westermann 2021, DiffDVR

How to train

The training is launched via applications/volnet/train_volnet.py. Have a look at python train_volnet.py --help for the available command line parameters.

A typical invocation looks like this (this is how fV-SRN with Ejecta from Fig. 1 was trained)

python train_volnet.py
   config-files/ejecta70-v6-dvr.json
   --train:mode world  # instead of 'screen', Sec. 5.4
   --train:samples 256**3
   --train:sampler_importance 0.01   # importance sampling based on the density, optional, see Section 5.3
   --train:batchsize 64*64*128
   --rebuild_dataset 51   # adaptive resampling after 51 epochs, see Section 5.3
   --val:copy_and_split  # for validation, use 20% of training samples
   --outputmode density:direct  # instead of e.g. 'color', Sec. 5.3
   --lossmode density
   --layers 32:32:32  # number of hidden feature layers -> that number + 1 for the number of linear layers / weight matrices.
   --activation SnakeAlt:2
   --fouriercount 14
   --fourierstd -1  # -1 indicates NeRF-construction, positive value indicate sigma for random Fourier Features, see Sec. 5.5
   --volumetric_features_resolution 32  # the grid specification, see Sec. 5.2
   --volumetric_features_channels 16
   -l1 1  #use L1-loss with weight 1
   --lr 0.01
   --lr_step 100  #lr reduction after 100 epochs, default lr is used 
   -i 200  # number of epochs
   --save_frequency 20  # checkpoints + test visualization

After training, the resulting .hdf5 file contains the network weights + latent grid and can be compiled to our binary format via inference.py. The resulting .volnet file can the be loaded in the GUI.

How to reproduce the figures

Each figure is associated with a respective script in applications/volnet. Those scripts include the training of the networks, evaluation, and plot generation. They have to be launched with the current path pointing to applications/. Note that some of those scripts take multiple hours due to the network training.

  • Figure 1, teaser: applications/volnet/eval_CompressionTeaser.py
  • Table 1, possible architectures: applications/volnet/collect_possible_layers.py
  • Section 4.2, change to performance due to grid compression: applications/volnet/eval_VolumetricFeatures_GridEncoding
  • Figure 3, performance of the networks: applications/volnet/eval_NetworkConfigsGrid.py
  • Section 5, study on the activation functions: applications/volnet/eval_ActivationFunctions.py
  • Figure 4+5, latent grid, also includes other datasets: applications/volnet/eval_VolumetricFeatures.py
  • Figure 6, density-vs-color: applications/volnet/eval_world_DensityVsColorGrid_NoImportance.py without initial importance sampling and adaptive resampling (Fig. 6) applications/volnet/eval_world_DensityVsColorGrid.py , includes initial importance sampling, not shown applications/volnet/eval_world_DensityVsColorGrid_WithResampling.py , with initial importance sampling and adaptive resampling, improvement reported in Section 5.3
  • Table 2, Figure 7, screen-vs-world: applications/volnet/eval_ScreenVsWorld_GridNeRF.py
  • Figure 8, Fourier features: applications/volnet/eval_Fourier_Grid.py , includes the datasets not shown in the paper for space reasons
  • Figure 9,10, time-dependent fields: applications/volnet/eval_TimeVolumetricFeatures.py: train on every fifth timestep applications/volnet/eval_TimeVolumetricFeatures2.py: train on every second timestep applications/volnet/eval_TimeVolumetricFeatures_plotPaper.py: assembles the plot for Figure 9

The other eval_*.py scripts were cut from the paper due to space limitations. They equal the tests above, except that no grid was used and instead the largest possible networks fitting into the TC-architecture

Owner
Sebastian Weiss
Ph.D. student of computer science at the Technical University of Munich
Sebastian Weiss
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022