Fast Neural Representations for Direct Volume Rendering

Related tags

Deep LearningfV-SRN
Overview

Fast Neural Representations for Direct Volume Rendering

Teaser

Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann

This repository contains the code and settings to reproduce all figures (and more) from the paper. https://arxiv.org/abs/2112.01579

Jump to

How to train a new network

How to reproduce the figures

Video

Watch the video

Requirements

  • NVIDIA GPU with RTX, e.g. RTX20xx or RTX30xx (we use an RTX2070)
  • CUDA 11
  • OpenGL with GLFW and GLM
  • Python 3.8 or higher, see applications/env.txt for the required packages

Tested systems:

  • Windows 10, Visual Studio 2019, CUDA 11.1, Python 3.9, PyTorch 1.9
  • Ubuntu 20.04, gcc 9.3.0, CUDA 11.1, Python 3.8, PyTorch 1.8

Installation / Project structure

The project consists of a C++/CUDA part that has to be compiled first:

  • renderer: the renderer static library, see below for noteworthy files. Files ending in .cuh and .cu are CUDA kernel files.
  • bindings: entry point to the Python bindings, after compilation leads to a python extension module pyrenderer, placed in bin
  • gui: the interactive GUI to design the config files, explore the reference datasets and the trained networks. Requires OpenGL

For compilation, we recommend CMake. For running on a headless server, specifiy -DRENDERER_BUILD_OPENGL_SUPPORT=Off -DRENDERER_BUILD_GUI=Off. Alternatively, compile-library-server.sh is provided for compilation with the built-in extension compiler of PyTorch. We use this for compilation on our headless GPU server, as it simplifies potential wrong dependencies to different CUDA, Python or PyTorch versions with different virtualenvs or conda environments.

After compiling the C++ library, the network training and evaluation is performed in Python. The python files are all found in applications:

  • applications/volumes the volumes used in the ablation studies
  • applicatiosn/config-files the config files
  • applications/common: common utilities, especially utils.py for loading the pyrenderer library and other helpers
  • applications/losses: the loss functions, including SSIM and LPIPS
  • applications/volnet: the main network code for training in inference, see below.

Noteworthy Files

Here we list and explain noteworthy files that contain important aspects of the presented method

On the side of the C++/CUDA library in renderer/ are the following files important. Note that for the various modules, multiple implementations exists, e.g. for the TF. Therefore, the CUDA-kernels are assembled on-demand using NVRTC runtime compilation.

  • Image evaluators (iimage_evaluator.h), the entry point to the renderer. Only one implementation:

    • image_evaluator_simple.h, renderer_image_evaluator_simple.cuh: Contains the loop over the pixels and generates the rays -- possibly multisampled for Monte Carlo -- from the camera
  • Ray evaluators (iray_evaluation.h), called per ray and returns the colors. They call the volume implementation to fetch the density

    • ray_evaluation_stepping.h, renderer_ray_evaluation_stepping_iso.cuh, renderer_ray_evaluation_stepping_dvr.cuh: constant stepping for isosurfaces and DVR.
    • ray_evaluation_monte_carlo.h Monte Carlo path tracing with multiple bounces, delta tracking and various phase functions
  • Volume interpolations (volume_interpolation.h). On the CUDA-side, implementations provide a functor that evaluates a position and returns the density or color at that point

    • Grid interpolation (volume_interpolation_grid.h), trilinear interpolation into a voxel grid stored in volume.h.
    • Scene Reconstruction Networks (volume_interpolation_network.h). The SRNs as presented in the paper. See the header for the binary format of the .volnet file. The proposed tensor core implementation (Sec. 4.1) can be found in renderer_volume_tensorcores.cuh

On the python side in applications/volnet/, the following files are important:

  • train_volnet: the entry point for training
  • inference.py: the entry point for inference, used in the scripts for evaluation. Also converts trained models into the binary format for the GUI
  • network.py: The SRN network specification
  • input_data.py: The loader of the input grids, possibly time-dependent
  • training_data.py: world- and screen-space data loaders, contains routines for importance sampling / adaptive resampling. The rejection sampling is implemented in CUDA for performance and called from here
  • raytracing.py: Differentiable raytracing in PyTorch, including the memory optimization from Weiss&Westermann 2021, DiffDVR

How to train

The training is launched via applications/volnet/train_volnet.py. Have a look at python train_volnet.py --help for the available command line parameters.

A typical invocation looks like this (this is how fV-SRN with Ejecta from Fig. 1 was trained)

python train_volnet.py
   config-files/ejecta70-v6-dvr.json
   --train:mode world  # instead of 'screen', Sec. 5.4
   --train:samples 256**3
   --train:sampler_importance 0.01   # importance sampling based on the density, optional, see Section 5.3
   --train:batchsize 64*64*128
   --rebuild_dataset 51   # adaptive resampling after 51 epochs, see Section 5.3
   --val:copy_and_split  # for validation, use 20% of training samples
   --outputmode density:direct  # instead of e.g. 'color', Sec. 5.3
   --lossmode density
   --layers 32:32:32  # number of hidden feature layers -> that number + 1 for the number of linear layers / weight matrices.
   --activation SnakeAlt:2
   --fouriercount 14
   --fourierstd -1  # -1 indicates NeRF-construction, positive value indicate sigma for random Fourier Features, see Sec. 5.5
   --volumetric_features_resolution 32  # the grid specification, see Sec. 5.2
   --volumetric_features_channels 16
   -l1 1  #use L1-loss with weight 1
   --lr 0.01
   --lr_step 100  #lr reduction after 100 epochs, default lr is used 
   -i 200  # number of epochs
   --save_frequency 20  # checkpoints + test visualization

After training, the resulting .hdf5 file contains the network weights + latent grid and can be compiled to our binary format via inference.py. The resulting .volnet file can the be loaded in the GUI.

How to reproduce the figures

Each figure is associated with a respective script in applications/volnet. Those scripts include the training of the networks, evaluation, and plot generation. They have to be launched with the current path pointing to applications/. Note that some of those scripts take multiple hours due to the network training.

  • Figure 1, teaser: applications/volnet/eval_CompressionTeaser.py
  • Table 1, possible architectures: applications/volnet/collect_possible_layers.py
  • Section 4.2, change to performance due to grid compression: applications/volnet/eval_VolumetricFeatures_GridEncoding
  • Figure 3, performance of the networks: applications/volnet/eval_NetworkConfigsGrid.py
  • Section 5, study on the activation functions: applications/volnet/eval_ActivationFunctions.py
  • Figure 4+5, latent grid, also includes other datasets: applications/volnet/eval_VolumetricFeatures.py
  • Figure 6, density-vs-color: applications/volnet/eval_world_DensityVsColorGrid_NoImportance.py without initial importance sampling and adaptive resampling (Fig. 6) applications/volnet/eval_world_DensityVsColorGrid.py , includes initial importance sampling, not shown applications/volnet/eval_world_DensityVsColorGrid_WithResampling.py , with initial importance sampling and adaptive resampling, improvement reported in Section 5.3
  • Table 2, Figure 7, screen-vs-world: applications/volnet/eval_ScreenVsWorld_GridNeRF.py
  • Figure 8, Fourier features: applications/volnet/eval_Fourier_Grid.py , includes the datasets not shown in the paper for space reasons
  • Figure 9,10, time-dependent fields: applications/volnet/eval_TimeVolumetricFeatures.py: train on every fifth timestep applications/volnet/eval_TimeVolumetricFeatures2.py: train on every second timestep applications/volnet/eval_TimeVolumetricFeatures_plotPaper.py: assembles the plot for Figure 9

The other eval_*.py scripts were cut from the paper due to space limitations. They equal the tests above, except that no grid was used and instead the largest possible networks fitting into the TC-architecture

Owner
Sebastian Weiss
Ph.D. student of computer science at the Technical University of Munich
Sebastian Weiss
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023