Learnable Boundary Guided Adversarial Training (ICCV2021)

Overview

Learnable Boundary Guided Adversarial Training

This repository contains the implementation code for the ICCV2021 paper:
Learnable Boundary Guided Adversarial Training (https://arxiv.org/pdf/2011.11164.pdf)

If you find this code or idea useful, please consider citing our work:

@article{cui2020learnable,
  title={Learnable boundary guided adversarial training},
  author={Cui, Jiequan and Liu, Shu and Wang, Liwei and Jia, Jiaya},
  journal={arXiv preprint arXiv:2011.11164},
  year={2020}
}

Overview

In this paper, we proposed the "Learnable Boundary Guided Adversarial Training" to preserve high natural accuracy while enjoy strong robustness for deep models. An interesting phenomenon in our exploration shows that natural classifier boundary can benefit model robustness to some degree, which is different from the previous work that the improved robustness is at cost of performance degradation on natural data. Our method creates new state-of-the-art model robustness on CIFAR-100 without extra real or Synthetic data under auto-attack benchmark.

image

Results and Pretrained models

`
Models are evaluated under the strongest AutoAttack(https://github.com/fra31/auto-attack) with epsilon 0.031.

Our CIFAR-100 models:
CIFAR-100-LBGAT0-wideresnet-34-10 70.25 vs 27.16
CIFAR-100-LBGAT6-wideresnet-34-10 60.64 vs 29.33
CIFAR-100-LBGAT6-wideresnet-34-20 62.55 vs 30.20

Our CIFAR-10 models:
CIFAR-10-LBGAT0-wideresnet-34-10 88.22 vs 52.86
CIFAR-10-LBGAT0-wideresnet-34-20 88.70 vs 53.57

CIFAR-100 L-inf

Note: this is one partial results list for comparisons with methods without using additional data up to 2020/11/25. Full list can be found at https://github.com/fra31/auto-attack. TRADES (alpha=6) is trained with official open-source code at https://github.com/yaodongyu/TRADES.

# Method Model Natural Acc Robust Acc (AutoAttack)
1 LBGAT (Ours) WRN-34-20 62.55 30.20
2 (Gowal et al. 2020) WRN-70-16 60.86 30.03
3 LBGAT (Ours) WRN-34-10 60.64 29.33
4 (Wu et al. 2020) WRN-34-10 60.38 28.86
5 LBGAT (Ours) WRN-34-10 70.25 27.16
6 (Chen et al. 2020) WRN-34-10 62.15 26.94
7 (Zhang et al. 2019) TRADES (alpha=6) WRN-34-10 56.50 26.87
8 (Sitawarin et al. 2020) WRN-34-10 62.82 24.57
9 (Rice et al. 2020) RN-18 53.83 18.95

CIFAR-10 L-inf

Note: this is one partial results list for comparisons with previous published methods without using additional data up to 2020/11/25. Full list can be found at https://github.com/fra31/auto-attack. TRADES (alpha=6) is trained with official open-source code at https://github.com/yaodongyu/TRADES. “*” denotes methods aiming to speed up adversarial training.

# Method Model Natural Acc Robust Acc (AutoAttack)
1 LBGAT (Ours) WRN-34-20 88.70 53.57
2 (Zhang et al.) WRN-34-10 84.52 53.51
3 (Rice et al. 2020) WRN-34-20 85.34 53.42
4 LBGAT (Ours) WRN-34-10 88.22 52.86
5 (Qin et al., 2019) WRN-40-8 86.28 52.84
6 (Zhang et al. 2019) TRADES (alpha=6) WRN-34-10 84.92 52.64
7 (Chen et al., 2020b) WRN-34-10 85.32 51.12
8 (Sitawarin et al., 2020) WRN-34-10 86.84 50.72
9 (Engstrom et al., 2019) RN-50 87.03 49.25
10 (Kumari et al., 2019) WRN-34-10 87.80 49.12
11 (Mao et al., 2019) WRN-34-10 86.21 47.41
12 (Zhang et al., 2019a) WRN-34-10 87.20 44.83
13 (Madry et al., 2018) AT WRN-34-10 87.14 44.04
14 (Shafahi et al., 2019)* WRN-34-10 86.11 41.47
14 (Wang & Zhang, 2019)* WRN-28-10 92.80 29.35

Get Started

Befor the training, please create the directory 'Logs' via the command 'mkdir Logs'.

Training

bash sh/train_lbgat0_cifar100.sh

Evaluation

before running the evaluation, please download the pretrained model.

bash sh/eval_autoattack.sh

Acknowledgements

This code is partly based on the TRADES and autoattack.

Contact

If you have any questions, feel free to contact us through email ([email protected]) or Github issues. Enjoy!

Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
TAPEX: Table Pre-training via Learning a Neural SQL Executor

TAPEX: Table Pre-training via Learning a Neural SQL Executor The official repository which contains the code and pre-trained models for our paper TAPE

Microsoft 157 Dec 28, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0

Tzu-Wei Huang 7.5k Dec 28, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022