Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Overview

Self-attention building blocks for computer vision applications in PyTorch

Implementation of self attention mechanisms for computer vision in PyTorch with einsum and einops. Focused on computer vision self-attention modules.

Install it via pip

It would be nice to install pytorch in your enviroment, in case you don't have a GPU.

pip install self-attention-cv

Related articles

More articles are on the way.

Code Examples

Multi-head attention

import torch
from self_attention_cv import MultiHeadSelfAttention

model = MultiHeadSelfAttention(dim=64)
x = torch.rand(16, 10, 64)  # [batch, tokens, dim]
mask = torch.zeros(10, 10)  # tokens X tokens
mask[5:8, 5:8] = 1
y = model(x, mask)

Axial attention

import torch
from self_attention_cv import AxialAttentionBlock
model = AxialAttentionBlock(in_channels=256, dim=64, heads=8)
x = torch.rand(1, 256, 64, 64)  # [batch, tokens, dim, dim]
y = model(x)

Vanilla Transformer Encoder

import torch
from self_attention_cv import TransformerEncoder
model = TransformerEncoder(dim=64,blocks=6,heads=8)
x = torch.rand(16, 10, 64)  # [batch, tokens, dim]
mask = torch.zeros(10, 10)  # tokens X tokens
mask[5:8, 5:8] = 1
y = model(x,mask)

Vision Transformer with/without ResNet50 backbone for image classification

import torch
from self_attention_cv import ViT, ResNet50ViT

model1 = ResNet50ViT(img_dim=128, pretrained_resnet=False, 
                        blocks=6, num_classes=10, 
                        dim_linear_block=256, dim=256)
# or
model2 = ViT(img_dim=256, in_channels=3, patch_dim=16, num_classes=10,dim=512)
x = torch.rand(2, 3, 256, 256)
y = model2(x) # [2,10]

A re-implementation of Unet with the Vision Transformer encoder

import torch
from self_attention_cv.transunet import TransUnet
a = torch.rand(2, 3, 128, 128)
model = TransUnet(in_channels=3, img_dim=128, vit_blocks=8,
vit_dim_linear_mhsa_block=512, classes=5)
y = model(a) # [2, 5, 128, 128]

Bottleneck Attention block

import torch
from self_attention_cv.bottleneck_transformer import BottleneckBlock
inp = torch.rand(1, 512, 32, 32)
bottleneck_block = BottleneckBlock(in_channels=512, fmap_size=(32, 32), heads=4, out_channels=1024, pooling=True)
y = bottleneck_block(inp)

Position embeddings are also available

1D Positional Embeddings

import torch
from self_attention_cv.pos_embeddings import AbsPosEmb1D,RelPosEmb1D

model = AbsPosEmb1D(tokens=20, dim_head=64)
# batch heads tokens dim_head
q = torch.rand(2, 3, 20, 64)
y1 = model(q)

model = RelPosEmb1D(tokens=20, dim_head=64, heads=3)
q = torch.rand(2, 3, 20, 64)
y2 = model(q)

2D Positional Embeddings

import torch
from self_attention_cv.pos_embeddings import RelPosEmb2D
dim = 32  # spatial dim of the feat map
model = RelPosEmb2D(
    feat_map_size=(dim, dim),
    dim_head=128)

q = torch.rand(2, 4, dim*dim, 128)
y = model(q)

References

  1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.
  2. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., & Chen, L. C. (2020, August). Axial-deeplab: Stand-alone axial-attention for panoptic segmentation. In European Conference on Computer Vision (pp. 108-126). Springer, Cham.
  3. Srinivas, A., Lin, T. Y., Parmar, N., Shlens, J., Abbeel, P., & Vaswani, A. (2021). Bottleneck Transformers for Visual Recognition. arXiv preprint arXiv:2101.11605.
  4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
Comments
  • Thank you very much for the code. But when I run test_TransUnet.py , It starts reporting errors. Why is that? Could you please help me solve it? Thank you

    Thank you very much for the code. But when I run test_TransUnet.py , It starts reporting errors. Why is that? Could you please help me solve it? Thank you

    Thank you very much for the code. But when I run test_TransUnet.py , It starts reporting errors. Why is that?I `Traceback (most recent call last): File "self-attention-cv/tests/test_TransUnet.py", line 14, in test_TransUnet() File "/self-attention-cv/tests/test_TransUnet.py", line 11, in test_TransUnet y = model(a) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "self-attention-cv\self_attention_cv\transunet\trans_unet.py", line 88, in forward y = self.project_patches_back(y) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\modules\linear.py", line 93, in forward return F.linear(input, self.weight, self.bias) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\functional.py", line 1692, in linear output = input.matmul(weight.t()) RuntimeError: mat1 dim 1 must match mat2 dim 0

    Process finished with exit code 1 ` Could you please help me solve it? Thank you.

    opened by yezhengjie 7
  • TransUNet - Why is the patch_dim set to 1?

    TransUNet - Why is the patch_dim set to 1?

    Hi,

    Can you please explain why is the patch_dim set to 1 in TransUNet class? Thank you in advance!

    https://github.com/The-AI-Summer/self-attention-cv/blob/8280009366b633921342db6cab08da17b46fdf1c/self_attention_cv/transunet/trans_unet.py#L54

    opened by dsitnik 7
  • Question: Sliding Window Module for Transformer3dSeg Object

    Question: Sliding Window Module for Transformer3dSeg Object

    I was wondering whether or not you've implemented an example using the network in a 3d medical segmentation task and/or use case? If this network only exports the center slice of a patch then we would need a wrapper function to iterate through all patches in an image to get the final prediction for the entire volume. From the original paper, I assume they choose 10 patches at random from an image during training, but it's not too clear how they pieced everything together during testing.

    Your thoughts on this would be greatly appreciated!

    See: https://github.com/The-AI-Summer/self-attention-cv/blob/33ddf020d2d9fb9c4a4a3b9938383dc9b7405d8c/self_attention_cv/Transformer3Dsegmentation/tranf3Dseg.py#L10

    opened by jmarsil 5
  • ResNet + Pyramid Vision Transformer Version 2

    ResNet + Pyramid Vision Transformer Version 2

    Thank you for your work with a clear explanation. As you know, ViT doesn't work on small datasets and I am implementing ResNet34 with Pyramid Vision Transformer Version 2 to make it better. The architecture of ViT and PVT V2 is completely different. Could you provide me some help to implement it? please

    opened by khawar-islam 3
  • Request for Including UNETR

    Request for Including UNETR

    Thanks for great work ! I noticed nice implementation of this paper (https://arxiv.org/abs/2103.10504) here:

    https://github.com/tamasino52/UNETR/blob/main/unetr.py

    It would be great if this can also be included in your repo, since it comes with lots of other great features. So we can explore more.

    Thanks ~

    opened by Siyuan89 3
  • ImageNet Pretrained TimesFormer

    ImageNet Pretrained TimesFormer

    I see you have recently added the TimesFormer model to this repository. In the paper, they initialize their model weights from ImageNet pretrained weights of ViT. Does your implementation offer this too? Thanks!

    opened by RaivoKoot 3
  • Do the encoder modules incorporate positional encoding?

    Do the encoder modules incorporate positional encoding?

    I am wondering if I use say the LinformerEncoder if I have to add the position encoding or if that's already done? From the source files it doesn't seem to be there, but I'm not sure how to include the position encoding as they seem to need the query which isn't available when just passing data directly to the LinformerEncoder. I very well may be missing something any help would be great. Perhaps an example using positional encoding would be good.

    opened by jfkback 3
  • use AxialAttention on gpu

    use AxialAttention on gpu

    I try to use AxialAttention on gpu, but I get a mistake.Can you give me some tips about using AxialAttention on gpu. Thanks! mistake: RuntimeError: expected self and mask to be on the same device, but got mask on cpu and self on cuda:0

    opened by Iverson-Al 2
  • Axial attention

    Axial attention

    What is the meaning of qkv_channels? https://github.com/The-AI-Summer/self-attention-cv/blob/5246e550ecb674f60df76a6c1011fde30ded7f44/self_attention_cv/axial_attention_deeplab/axial_attention.py#L32

    opened by Jayden9912 1
  • Convolution-Free Medical Image Segmentation using Transformers

    Convolution-Free Medical Image Segmentation using Transformers

    Thank you very much for your contribution. As a novice, I have a doubt. In tranf3dseg, the output of the model is the prediction segmentation of the center patch, so how can I get the segmentation of the whole input image? I am looking forward to any reply.

    opened by WinsaW 1
  • Regression with attention

    Regression with attention

    Hello!

    thanks for sharing this nice repo :)

    I'm trying to use ViT to do regression on images. I'd like to predict 6 floats per image.

    My understanding is that I'd need to simply define the network as

    vit = ViT(img_dim=128,
                   in_channels=3,
                   patch_dim=16,
                   num_classes=6,
                   dim=512)
    

    and during training call

    vit(x)
    

    and compute the loss as MSE instead of CE.

    The network actually runs but it doesn't seem to converge. Is there something obvious I am missing?

    many thanks!

    opened by alemelis 1
  • Segmentation for full image

    Segmentation for full image

    Hi,

    Thank you for your effort and time in implementing this. I have a quick question, I want to get segmentation for full image not just for the middle token, would it be correct to change self.tokens to self.p here:

    https://github.com/The-AI-Summer/self-attention-cv/blob/5246e550ecb674f60df76a6c1011fde30ded7f44/self_attention_cv/Transformer3Dsegmentation/tranf3Dseg.py#L66

    and change this:

    https://github.com/The-AI-Summer/self-attention-cv/blob/5246e550ecb674f60df76a6c1011fde30ded7f44/self_attention_cv/Transformer3Dsegmentation/tranf3Dseg.py#L94

    to

    y = self.mlp_seg_head(y)

    opened by aqibsaeed 0
Releases(1.2.3)
Owner
AI Summer
Learn Deep Learning and Artificial Intelligence
AI Summer
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022