Semantically Contrastive Learning for Low-light Image Enhancement

Related tags

Deep LearningSCL-LLE
Overview

Semantically Contrastive Learning for Low-light Image Enhancement

Here, we propose an effective semantically contrastive learning paradigm for Low-light image enhancement (namely SCL-LLE). Beyond the existing LLE wisdom, it casts the image enhancement task as multi-task joint learning, where LLE is converted into three constraints of contrastive learning, semantic brightness consistency, and feature preservation for simultaneously ensuring the exposure, texture, and color consistency. SCL-LLE allows the LLE model to learn from unpaired positives (normal-light)/negatives (over/underexposed), and enables it to interact with the scene semantics to regularize the image enhancement network, yet the interaction of high-level semantic knowledge and the low-level signal prior is seldom investigated in previous methods.


Network

image-20210907163635797

  • Overall architecture of our proposed SCL-LLE. It includes a low-light image enhancement network, a contrastive learning module and a semantic segmentation module.

Experiment

PyTorch implementation of SCL-LLE

Requirements

  • Python 3.7
  • PyTorch 1.4.0
  • opencv
  • torchvision
  • numpy
  • pillow
  • scikit-learn
  • tqdm
  • matplotlib
  • visdom

SCL-LLE does not need special configurations. Just basic environment.

Folder structure

The following shows the basic folder structure.

├── datasets
│   ├── data
│   │   ├── cityscapes
│   │   └── Contrast
|   ├── test_data
│   ├── cityscapes.py
|   └── util.py
├── network # semantic segmentation model
├── lowlight_test.py # low-light image enhancement testing code
├── train.py # training code
├── lowlight_model.py
├── Myloss.py
├── checkpoints
│   ├── best_deeplabv3plus_mobilenet_cityscapes_os16.pth #  A pre-trained semantic segmentation model
│   ├── LLE_model.pth #  A pre-trained SCL-LLE model

Test

  • cd SCL-LLE
python lowlight_test.py

The script will process the images in the sub-folders of "test_data" folder and make a new folder "result" in the "datasets". You can find the enhanced images in the "result" folder.

Train

  1. cd SCL-LLE
  2. download the Cityscapes dataset
  3. download the cityscapes training data google drive and contrast training data google drive
  4. unzip and put the downloaded "train" folder and "Contrast" folder to "datasets/data/cityscapes/leftImg8bit" folder and "datasets/data" folder
  5. download the pre-trained semantic segmentation model and put it to "checkpoints" folder
python train.py

Contact

If you have any question, please contact [email protected]

This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022