Semantically Contrastive Learning for Low-light Image Enhancement

Related tags

Deep LearningSCL-LLE
Overview

Semantically Contrastive Learning for Low-light Image Enhancement

Here, we propose an effective semantically contrastive learning paradigm for Low-light image enhancement (namely SCL-LLE). Beyond the existing LLE wisdom, it casts the image enhancement task as multi-task joint learning, where LLE is converted into three constraints of contrastive learning, semantic brightness consistency, and feature preservation for simultaneously ensuring the exposure, texture, and color consistency. SCL-LLE allows the LLE model to learn from unpaired positives (normal-light)/negatives (over/underexposed), and enables it to interact with the scene semantics to regularize the image enhancement network, yet the interaction of high-level semantic knowledge and the low-level signal prior is seldom investigated in previous methods.


Network

image-20210907163635797

  • Overall architecture of our proposed SCL-LLE. It includes a low-light image enhancement network, a contrastive learning module and a semantic segmentation module.

Experiment

PyTorch implementation of SCL-LLE

Requirements

  • Python 3.7
  • PyTorch 1.4.0
  • opencv
  • torchvision
  • numpy
  • pillow
  • scikit-learn
  • tqdm
  • matplotlib
  • visdom

SCL-LLE does not need special configurations. Just basic environment.

Folder structure

The following shows the basic folder structure.

├── datasets
│   ├── data
│   │   ├── cityscapes
│   │   └── Contrast
|   ├── test_data
│   ├── cityscapes.py
|   └── util.py
├── network # semantic segmentation model
├── lowlight_test.py # low-light image enhancement testing code
├── train.py # training code
├── lowlight_model.py
├── Myloss.py
├── checkpoints
│   ├── best_deeplabv3plus_mobilenet_cityscapes_os16.pth #  A pre-trained semantic segmentation model
│   ├── LLE_model.pth #  A pre-trained SCL-LLE model

Test

  • cd SCL-LLE
python lowlight_test.py

The script will process the images in the sub-folders of "test_data" folder and make a new folder "result" in the "datasets". You can find the enhanced images in the "result" folder.

Train

  1. cd SCL-LLE
  2. download the Cityscapes dataset
  3. download the cityscapes training data google drive and contrast training data google drive
  4. unzip and put the downloaded "train" folder and "Contrast" folder to "datasets/data/cityscapes/leftImg8bit" folder and "datasets/data" folder
  5. download the pre-trained semantic segmentation model and put it to "checkpoints" folder
python train.py

Contact

If you have any question, please contact [email protected]

The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022