PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

Related tags

Deep LearningPSANet
Overview

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction)

by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Loy, Dahua Lin, Jiaya Jia, details are in project page.

Introduction

This repository is build for PSANet, which contains source code for PSA module and related evaluation code. For installation, please merge the related layers and follow the description in PSPNet repository (test with CUDA 7.0/7.5 + cuDNN v4).

PyTorch Version

Highly optimized PyTorch codebases available for semantic segmentation in repo: semseg, including full training and testing codes for PSPNet and PSANet.

Usage

  1. Clone the repository recursively:

    git clone --recursive https://github.com/hszhao/PSANet.git
  2. Merge the caffe layers into PSPNet repository:

    Point-wise spatial attention: pointwise_spatial_attention_layer.hpp/cpp/cu and caffe.proto.

  3. Build Caffe and matcaffe:

    cd $PSANET_ROOT/PSPNet
    cp Makefile.config.example Makefile.config
    vim Makefile.config
    make -j8 && make matcaffe
    cd ..
  4. Evaluation:

    • Evaluation code is in folder 'evaluation'.

    • Download trained models and put them in related dataset folder under 'evaluation/model', refer 'README.md'.

    • Modify the related paths in 'eval_all.m':

      Mainly variables 'data_root' and 'eval_list', and your image list for evaluation should be similarity to that in folder 'evaluation/samplelist' if you use this evaluation code structure.

    cd evaluation
    vim eval_all.m
    • Run the evaluation scripts:
    ./run.sh
    
  5. Results:

    Predictions will show in folder 'evaluation/mc_result' and the expected scores are listed as below:

    (mIoU/pAcc. stands for mean IoU and pixel accuracy, 'ss' and 'ms' denote single scale and multiple scale testing.)

    ADE20K:

    network training data testing data mIoU/pAcc.(ss) mIoU/pAcc.(ms) md5sum
    PSANet50 train val 41.92/80.17 42.97/80.92 a8e884
    PSANet101 train val 42.75/80.71 43.77/81.51 ab5e56

    VOC2012:

    network training data testing data mIoU/pAcc.(ss) mIoU/pAcc.(ms) md5sum
    PSANet50 train_aug val 77.24/94.88 78.14/95.12 d5fc37
    PSANet101 train_aug val 78.51/95.18 79.77/95.43 5d8c0f
    PSANet101 COCO + train_aug + val test -/- 85.7/- 3c6a69

    Cityscapes:

    network training data testing data mIoU/pAcc.(ss) mIoU/pAcc.(ms) md5sum
    PSANet50 fine_train fine_val 76.65/95.99 77.79/96.24 25c06a
    PSANet101 fine_train fine_val 77.94/96.10 79.05/96.30 3ac1bf
    PSANet101 fine_train fine_test -/- 78.6/- 3ac1bf
    PSANet101 fine_train + fine_val fine_test -/- 80.1/- 1dfc91
  6. Demo video:

    • Video processed by PSANet (with PSPNet) on BDD dataset for drivable area segmentation: Video.

Citation

If PSANet is useful for your research, please consider citing:

@inproceedings{zhao2018psanet,
  title={{PSANet}: Point-wise Spatial Attention Network for Scene Parsing},
  author={Zhao, Hengshuang and Zhang, Yi and Liu, Shu and Shi, Jianping and Loy, Chen Change and Lin, Dahua and Jia, Jiaya},
  booktitle={ECCV},
  year={2018}
}

Questions

Please contact '[email protected]' or '[email protected]'

Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023