Unsupervised captioning - Code for Unsupervised Image Captioning

Overview

Unsupervised Image Captioning

by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo

Introduction

Most image captioning models are trained using paired image-sentence data, which are expensive to collect. We propose unsupervised image captioning to relax the reliance on paired data. For more details, please refer to our paper.

alt text

Citation

@InProceedings{feng2019unsupervised,
  author = {Feng, Yang and Ma, Lin and Liu, Wei and Luo, Jiebo},
  title = {Unsupervised Image Captioning},
  booktitle = {CVPR},
  year = {2019}
}

Requirements

mkdir ~/workspace
cd ~/workspace
git clone https://github.com/tensorflow/models.git tf_models
git clone https://github.com/tylin/coco-caption.git
touch tf_models/research/im2txt/im2txt/__init__.py
touch tf_models/research/im2txt/im2txt/data/__init__.py
touch tf_models/research/im2txt/im2txt/inference_utils/__init__.py
wget http://download.tensorflow.org/models/inception_v4_2016_09_09.tar.gz
mkdir ckpt
tar zxvf inception_v4_2016_09_09.tar.gz -C ckpt
git clone https://github.com/fengyang0317/unsupervised_captioning.git
cd unsupervised_captioning
pip install -r requirements.txt
export PYTHONPATH=$PYTHONPATH:`pwd`

Dataset (Optional. The files generated below can be found at Gdrive).

In case you do not have the access to Google, the files are also available at One Drive.

  1. Crawl image descriptions. The descriptions used when conducting the experiments in the paper are available at link. You may download the descriptions from the link and extract the files to data/coco.

    pip3 install absl-py
    python3 preprocessing/crawl_descriptions.py
    
  2. Extract the descriptions. It seems that NLTK is changing constantly. So the number of the descriptions obtained may be different.

    python -c "import nltk; nltk.download('punkt')"
    python preprocessing/extract_descriptions.py
    
  3. Preprocess the descriptions. You may need to change the vocab_size, start_id, and end_id in config.py if you generate a new dictionary.

    python preprocessing/process_descriptions.py --word_counts_output_file \ 
      data/word_counts.txt --new_dict
    
  4. Download the MSCOCO images from link and put all the images into ~/dataset/mscoco/all_images.

  5. Object detection for the training images. You need to first download the detection model from here and then extract the model under tf_models/research/object_detection.

    python preprocessing/detect_objects.py --image_path\
      ~/dataset/mscoco/all_images --num_proc 2 --num_gpus 1
    
  6. Generate tfrecord files for images.

    python preprocessing/process_images.py --image_path\
      ~/dataset/mscoco/all_images
    

Training

  1. Train the model without the intialization pipeline.

    python im_caption_full.py --inc_ckpt ~/workspace/ckpt/inception_v4.ckpt\
      --multi_gpu --batch_size 512 --save_checkpoint_steps 1000\
      --gen_lr 0.001 --dis_lr 0.001
    
  2. Evaluate the model. The last element in the b34.json file is the best checkpoint.

    CUDA_VISIBLE_DEVICES='0,1' python eval_all.py\
      --inc_ckpt ~/workspace/ckpt/inception_v4.ckpt\
      --data_dir ~/dataset/mscoco/all_images
    js-beautify saving/b34.json
    
  3. Evaluate the model on test set. Suppose the best validation checkpoint is 20000.

    python test_model.py --inc_ckpt ~/workspace/ckpt/inception_v4.ckpt\
      --data_dir ~/dataset/mscoco/all_images --job_dir saving/model.ckpt-20000
    

Initialization (Optional. The files can be found at here).

  1. Train a object-to-sentence model, which is used to generate the pseudo-captions.

    python initialization/obj2sen.py
    
  2. Find the best obj2sen model.

    python initialization/eval_obj2sen.py --threads 8
    
  3. Generate pseudo-captions. Suppose the best validation checkpoint is 35000.

    python initialization/gen_obj2sen_caption.py --num_proc 8\
      --job_dir obj2sen/model.ckpt-35000
    
  4. Train a captioning using pseudo-pairs.

    python initialization/im_caption.py --o2s_ckpt obj2sen/model.ckpt-35000\
      --inc_ckpt ~/workspace/ckpt/inception_v4.ckpt
    
  5. Evaluate the model.

    CUDA_VISIBLE_DEVICES='0,1' python eval_all.py\
      --inc_ckpt ~/workspace/ckpt/inception_v4.ckpt\
      --data_dir ~/dataset/mscoco/all_images --job_dir saving_imcap
    js-beautify saving_imcap/b34.json
    
  6. Train sentence auto-encoder, which is used to initialize sentence GAN.

    python initialization/sentence_ae.py
    
  7. Train sentence GAN.

    python initialization/sentence_gan.py
    
  8. Train the full model with initialization. Suppose the best imcap validation checkpoint is 18000.

    python im_caption_full.py --inc_ckpt ~/workspace/ckpt/inception_v4.ckpt\
      --imcap_ckpt saving_imcap/model.ckpt-18000\
      --sae_ckpt sen_gan/model.ckpt-30000 --multi_gpu --batch_size 512\
      --save_checkpoint_steps 1000 --gen_lr 0.001 --dis_lr 0.001
    

Credits

Part of the code is from coco-caption, im2txt, tfgan, resnet, Tensorflow Object Detection API and maskgan.

Xinpeng told me the idea of self-critic, which is crucial to training.

Owner
Yang Feng
SWE @ Goolgle
Yang Feng
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
8-week curriculum for AI Builders

curriculum 8-week curriculum for AI Builders สารบัญ บทที่ 1 - Machine Learning คืออะไร บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่ บทที่ 3 - Stochastic

AI Builders 134 Jan 03, 2023