Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

Related tags

Deep LearningSNAS4MTF
Overview

1 SNAS4MTF

This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting.

1.1 The framework of SNAS4MTF

framework

2 Prerequisites

  • Python 3.6.12
  • PyTorch 1.2.0
  • math, sklearn, numpy

3 Datasets

3.1 METR-LA

This dataset is collected by the Los Angeles Metropolitan Transportation Authority and contains the average traffic speed measured by 207 loop detectors on the highways of Los Angeles County between March 2012 and June 2012.

3.2 PEMS-BAY

The raw data is in http://pems.dot.ca.gov. This dataset is collected by California Transportation Agencies and contains the average traffic speed measured by 325 sensors in the Bay Area between January 2017 and May 2017.

4 Running

4.1 Install all dependencies listed in prerequisites

4.2 Download the dataset

4.3 Neural Architecture Search

# Neural Architecture Search on PEMS_BAY
 python search.py --config config/PEMS_BAY_para.yaml |& tee logs/search_PEMS_BAY.log
 # Neural Architecture Search on METR_LA
 python search.py --config config/METR_LA_para.yaml |& tee logs/search_METR_LA.log

4.4 Training

# Train on PEMS_BAY
python train.py --config config/PEMS_BAY_para.yaml  |& tee logs/train_PEMS_BAY.log
# Train on METR-LA
python train.py --config config/METR_LA_para.yaml |& tee logs/train_METR_LA.log

4.5 Evaluating

# Evaluate on PEMS_BAY
python test.py --config config/PEMS_BAY_para.yaml |& tee logs/test_PEMS_BAY.log
# Evaluate on METR-LA
python test.py --config config/METR_LA_para.yaml |& tee logs/test_METR_LA.log

5 Citation

Please cite the following paper if you use the code in your work:

@Inproceedings{616B,
  title={Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting.},
  author={Donghui Chen, Ling Chen, Youdong Zhang, et al.},
  booktitle={},
  year={2021}
}
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper โ€œDynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) ๐ŸŒ Links ๐ŸŒ ๐Ÿ“‚ Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022