# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing JGraphT) and Pandas(for data analysis) are installed. To install Maven on Ubuntu, type the following commands on terminal: sudo apt-get update sudo apt-get install maven For Pandas, type the following: pip3 install pandas ( sudo apt-get install python3-pip if pip is not installed already) # 2. Compilation Type the following to compile this project: mvn compile # 3. Running the code Below is the command for running tests for SNAP(DIMACS) and grid data. java -Xms24G -Xmx48G -Xmn36G -Xss1G -cp $CLASSPATHS shell.TestSNAP (the filename of data; just the name and not the path) (# of tests) (randomization seed) java -Xms32G -Xmx64G -Xmn48G -Xss1G -cp $CLASSPATHS shell.TestGrid (Maximum dimension) (dimension increment) [List of the values for k, space-separated] You may change the randomization seed (vertex selection) to assess reproducibility. (In our experiment, the seed was set to 2021.) For the data, check "src/SNAP(or DIMACS)". Output "test_result.csv" will be saved on "target" directory. Check if 'CLASSPATHS' is set properly. Please refer to " sample.sh " for examples & further details. #4. Obtaining average processing time and diversity First, move to the target directory. Then run get_averages.py python3 get_averages (.csv file name) [list of the values for k, space-separated. Optional parameter.]
Diverse graph algorithms implemented using JGraphT library.
Overview
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.
deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si
PyTorch implementation of PNASNet-5 on ImageNet
PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation
Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes
Dynamic Token Normalization Improves Vision Transformers
Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library
Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video
Classification of EEG data using Deep Learning
Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a
Multivariate Boosted TRee
Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h
Official implementation of paper Gradient Matching for Domain Generalization
Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,
PyTorch reimplementation of minimal-hand (CVPR2020)
Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil
Music Generation using Neural Networks Streamlit App
Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i
Personalized Federated Learning using Pytorch (pFedMe)
Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX
Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li
Pytorch Implementation for (STANet+ and STANet)
Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash
Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How
Keras documentation, hosted live at keras.io
Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst
TipToiDog - Tip Toi Dog With Python
TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.
FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.
Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum
Implementation for NeurIPS 2021 Submission: SparseFed
READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P