Modification of convolutional neural net "UNET" for image segmentation in Keras framework

Overview

ZF_UNET_224 Pretrained Model

Modification of convolutional neural net "UNET" for image segmentation in Keras framework

Requirements

Python 3.*, Keras 2.1, Tensorflow 1.4

Usage

from zf_unet_224_model import ZF_UNET_224, dice_coef_loss, dice_coef
from keras.optimizers import Adam

model = ZF_UNET_224(weights='generator')
optim = Adam()
model.compile(optimizer=optim, loss=dice_coef_loss, metrics=[dice_coef])

model.fit(...)

Notes

Pretrained weights

Download: Weights for Tensorflow backend ~123 MB (Keras 2.1, Dice coef: 0.998)

Weights were obtained with random image generator (generator code available here: train_infinite_generator.py). See example of images from generator below.

Example of images from generator

Dice coefficient for pretrained weights: ~0.998. See history of learning below:

Log of dice coefficient during training process

Comments
  • Extended example

    Extended example

    Hi, I have created extended example based on your repository: https://github.com/mrgloom/keras-semantic-segmentation-example

    It also use random colors for foreground and background (not like lighter and darker like here https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model/blob/master/train_infinite_generator.py#L24 ), one idea behind it is that in that case network can learn 'shape of object' not just 'thresholding and separating background and foreground', also looks like using random colors make problem harder and network converges slower.

    Also I have experienced some problems:

    1. Netwoks not always converges on second run with fixed params even for this toy problem, looks like it depens on random seed.
    2. Dice loss and jaccard loss are harder to train than binary crossentropy, any ideas why? Network architecture is the same just loss differs, I even tried to load trained weights from binary crossentropy loss network and use them in dice loss network which show high dice coef.
    opened by mrgloom 8
  • Deeper network

    Deeper network

    I know this is not an issue, but I wanted to contact you to know how did you make the network deeper in keras for the DSTL competition using this model?

    opened by nassarofficial 6
  • Tensorflow problem

    Tensorflow problem

    When I use tensorflow-1.3.0 as backend, I get this kind of error:

    builtins.ValueError: Dimension 2 in both shapes must be equal, but are 3 and 32 for 'Assign' (op: 'Assign') with input shapes: [3,3,3,32], [3,3,32,3].
    
    opened by lawlite19 5
  • preprocess_batch for real data

    preprocess_batch for real data

    Here is preprocessing for the batch (looks like 256 should be 255 ;) ) https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model/blob/master/zf_unet_224_model.py#L27

    Is it ok for real images to use code like this or it should be calculated for entire dataset?

    batch=batch-np.mean(batch)
    batch=batch/np.std(batch)
    

    Also how crucial is impact of data normalization for U-net? In my tests even on this simple synthetic data network doesn't converges if input is not normalized.

    opened by mrgloom 2
  • Applying pretrained weights to 128*128 size image

    Applying pretrained weights to 128*128 size image

    You have generated pretrained weights for 224224 input size, but I have 128128. How can we use such weights in this situation, but without padding/upsampling 128*128 images. Sorry for silly question - is it worth trying in kaggle salt competition?

    opened by Diyago 1
  • Attribute Error

    Attribute Error

    Traceback (most recent call last): File "train.py", line 11, in import segmentation_models as sm File "/home/melih/anaconda3/envs/ai/lib/python3.6/site-packages/segmentation_models/init.py", line 98, in set_framework(_framework) File "/home/melih/anaconda3/envs/ai/lib/python3.6/site-packages/segmentation_models/init.py", line 68, in set_framework import efficientnet.keras # init custom objects File "/home/melih/anaconda3/envs/ai/lib/python3.6/site-packages/efficientnet/keras.py", line 17, in init_keras_custom_objects() File "/home/melih/anaconda3/envs/ai/lib/python3.6/site-packages/efficientnet/init.py", line 71, in init_keras_custom_objects keras.utils.generic_utils.get_custom_objects().update(custom_objects) AttributeError: module 'keras.utils' has no attribute 'generic_utils'

    when I run the code, I got the result below but don't know why there is no generic_utils attribute in the library since there is in the keras.

    opened by melih1996 0
  • How to run the model for 6 input channels?

    How to run the model for 6 input channels?

    Is it possible to run the model for 6 input channels? Three inputs in that are RGB values and the other three are metrics I want to pass on into the architecture for my use case.

    opened by ShreyaPandita01 2
  • dice and jaccard metrics

    dice and jaccard metrics

    Thanks for the repo. I am wondering why do you use a smoothing factor of 1.0 in both dice and jaccard coefficients? Where does this value comes from? And what about using another smaller value close to zero, e.g. K.epsilon()

    opened by tinalegre 3
  • model.fit step

    model.fit step

    Hi! I would like to know how I should perform the model.fit instruction. model.fit(trainSet, mask_trainSet, batch_size=20, nb_epoch=1, verbose=1,validation_split=0.2, shuffle=True, callbacks=[model_checkpoint])¿? What I write in callback??

    And how should I use the weights if I wan't to use pretained weights??

    Thank you very much and sorry for the inconvenience!

    opened by AmericaBG 7
  • How to generate img and mask correctly

    How to generate img and mask correctly

    I run your code and then find that the img batch has a shape(16,224,224,3),but mask batch has a shape(16,1,224,224). I don't understand it.Can you explain it to me?I use my dataset to train unet and then the dice coef is high,but the real effect is bad.

    opened by wong-way 6
Releases(v1.0)
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ( 7 Jan 03, 2023

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022