End-to-end Temporal Action Detection with Transformer. [Under review]

Overview

TadTR: End-to-end Temporal Action Detection with Transformer

By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai.

This repo holds the code for TadTR, described in the technical report: End-to-end temporal action detection with Transformer

Introduction

TadTR is an end-to-end Temporal Action Detection TRansformer. It has the following advantages over previous methods:

  • Simple. It adopts a set-prediction pipeline and achieves TAD with a single network. It does not require a separate proposal generation stage.
  • Flexible. It removes hand-crafted design such as anchor setting and NMS.
  • Sparse. It produces very sparse detections (e.g. 10 on ActivityNet), thus requiring lower computation cost.
  • Strong. As a self-contained temporal action detector, TadTR achieves state-of-the-art performance on HACS and THUMOS14. It is also much stronger than concurrent Transformer-based methods.

We're still improving TadTR. Stay tuned for the future version.

Updates

[2021.9.15] Update the performance on THUMOS14.

[2021.9.1] Add demo code.

TODOs

  • add model code
  • add inference code
  • add training code
  • support training/inference with video input

Main Results

  • HACS Segments
Method Feature [email protected] [email protected] [email protected] Avg. mAP Model
TadTR I3D RGB 45.16 30.70 11.78 30.83 [OneDrive]
  • THUMOS14
Method Feature [email protected] [email protected] [email protected] [email protected] [email protected] Avg. mAP Model
TadTR I3D 2stream 72.92 66.86 58.59 46.31 32.32 55.40 [OneDrive]
TadTR TSN 2stream 64.24 58.34 50.01 40.79 29.07 48.49 [OneDrive]
  • ActivityNet-1.3
Method Feature [email protected] [email protected] [email protected] Avg. mAP Model
TadTR+BMN TSN 2stream 50.51 35.35 8.18 34.55 [OneDrive]

Install

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

  • PyTorch>=1.5.1, torchvision>=0.6.1 (following instructions here)

  • Other requirements

    pip install -r requirements.txt

Compiling CUDA extensions

cd model/ops;

# If you have multiple installations of CUDA Toolkits, you'd better add a prefix
# CUDA_HOME=<your_cuda_toolkit_path> to specify the correct version. 
python setup.py build_ext --inplace

Run a quick test

python demo.py

Data Preparation

To be updated.

Training

Run the following command

bash scripts/train.sh DATASET

Testing

bash scripts/test.sh DATASET WEIGHTS

Acknowledgement

The code is based on the DETR and Deformable DETR. We also borrow the implementation of the RoIAlign1D from G-TAD. Thanks for their great works.

Citing

@article{liu2021end,
  title={End-to-end Temporal Action Detection with Transformer},
  author={Liu, Xiaolong and Wang, Qimeng and Hu, Yao and Tang, Xu and Bai, Song and Bai, Xiang},
  journal={arXiv preprint arXiv:2106.10271},
  year={2021}
}

Contact

For questions and suggestions, please contact Xiaolong Liu at "liuxl at hust dot edu dot cn".

Owner
Xiaolong Liu
PhD student @ HUST | Deep learning | computer vision | action recognition
Xiaolong Liu
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023