Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Overview

Saliency Methods

🔴    Now framework-agnostic! (Example core notebook)   🔴

🔗    For further explanation of the methods and more examples of the resulting maps, see our Github Pages website   🔗

If upgrading from an older version, update old imports to import saliency.tf1 as saliency. We provide wrappers to make the framework-agnostic version compatible with TF1 models. (Example TF1 notebook)

Introduction

This repository contains code for the following saliency techniques:

*Developed by PAIR.

This list is by no means comprehensive. We are accepting pull requests to add new methods!

Download

# To install the core subpackage:
pip install saliency

# To install core and tf1 subpackages:
pip install saliency[tf1]

or for the development version:

git clone https://github.com/pair-code/saliency
cd saliency

Usage

The saliency library has two subpackages:

  • core uses a generic call_model_function which can be used with any ML framework.
  • tf1 accepts input/output tensors directly, and sets up the necessary graph operations for each method.

Core

Each saliency mask class extends from the CoreSaliency base class. This class contains the following methods:

  • GetMask(x_value, call_model_function, call_model_args=None): Returns a mask of the shape of non-batched x_value given by the saliency technique.
  • GetSmoothedMask(x_value, call_model_function, call_model_args=None, stdev_spread=.15, nsamples=25, magnitude=True): Returns a mask smoothed of the shape of non-batched x_value with the SmoothGrad technique.

The visualization module contains two methods for saliency visualization:

  • VisualizeImageGrayscale(image_3d, percentile): Marginalizes across the absolute value of each channel to create a 2D single channel image, and clips the image at the given percentile of the distribution. This method returns a 2D tensor normalized between 0 to 1.
  • VisualizeImageDiverging(image_3d, percentile): Marginalizes across the value of each channel to create a 2D single channel image, and clips the image at the given percentile of the distribution. This method returns a 2D tensor normalized between -1 to 1 where zero remains unchanged.

If the sign of the value given by the saliency mask is not important, then use VisualizeImageGrayscale, otherwise use VisualizeImageDiverging. See the SmoothGrad paper for more details on which visualization method to use.

call_model_function

call_model_function is how we pass inputs to a given model and receive the outputs necessary to compute saliency masks. The description of this method and expected output format is in the CoreSaliency description, as well as separately for each method.

Examples

This example iPython notebook showing these techniques is a good starting place.

Here is a condensed example of using IG+SmoothGrad with TensorFlow 2:

import saliency.core as saliency
import tensorflow as tf

...

# call_model_function construction here.
def call_model_function(x_value_batched, call_model_args, expected_keys):
	tape = tf.GradientTape()
	grads = np.array(tape.gradient(output_layer, images))
	return {saliency.INPUT_OUTPUT_GRADIENTS: grads}

...

# Load data.
image = GetImagePNG(...)

# Compute IG+SmoothGrad.
ig_saliency = saliency.IntegratedGradients()
smoothgrad_ig = ig_saliency.GetSmoothedMask(image, 
											call_model_function, 
                                            call_model_args=None)

# Compute a 2D tensor for visualization.
grayscale_visualization = saliency.VisualizeImageGrayscale(
    smoothgrad_ig)

TF1

Each saliency mask class extends from the TF1Saliency base class. This class contains the following methods:

  • __init__(graph, session, y, x): Constructor of the SaliencyMask. This can modify the graph, or sometimes create a new graph. Often this will add nodes to the graph, so this shouldn't be called continuously. y is the output tensor to compute saliency masks with respect to, x is the input tensor with the outer most dimension being batch size.
  • GetMask(x_value, feed_dict): Returns a mask of the shape of non-batched x_value given by the saliency technique.
  • GetSmoothedMask(x_value, feed_dict): Returns a mask smoothed of the shape of non-batched x_value with the SmoothGrad technique.

The visualization module contains two visualization methods:

  • VisualizeImageGrayscale(image_3d, percentile): Marginalizes across the absolute value of each channel to create a 2D single channel image, and clips the image at the given percentile of the distribution. This method returns a 2D tensor normalized between 0 to 1.
  • VisualizeImageDiverging(image_3d, percentile): Marginalizes across the value of each channel to create a 2D single channel image, and clips the image at the given percentile of the distribution. This method returns a 2D tensor normalized between -1 to 1 where zero remains unchanged.

If the sign of the value given by the saliency mask is not important, then use VisualizeImageGrayscale, otherwise use VisualizeImageDiverging. See the SmoothGrad paper for more details on which visualization method to use.

Examples

This example iPython notebook shows these techniques is a good starting place.

Another example of using GuidedBackprop with SmoothGrad from TensorFlow:

from saliency.tf1 import GuidedBackprop
from saliency.tf1 import VisualizeImageGrayscale
import tensorflow.compat.v1 as tf

...
# Tensorflow graph construction here.
y = logits[5]
x = tf.placeholder(...)
...

# Compute guided backprop.
# NOTE: This creates another graph that gets cached, try to avoid creating many
# of these.
guided_backprop_saliency = GuidedBackprop(graph, session, y, x)

...
# Load data.
image = GetImagePNG(...)
...

smoothgrad_guided_backprop =
    guided_backprop_saliency.GetMask(image, feed_dict={...})

# Compute a 2D tensor for visualization.
grayscale_visualization = visualization.VisualizeImageGrayscale(
    smoothgrad_guided_backprop)

Conclusion/Disclaimer

If you have any questions or suggestions for improvements to this library, please contact the owners of the PAIR-code/saliency repository.

This is not an official Google product.

Owner
PAIR code
Code repositories for projects from the People+AI Research (PAIR) Initiative
PAIR code
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022