Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Overview

Saliency Methods

πŸ”΄    Now framework-agnostic! (Example core notebook)   πŸ”΄

πŸ”—    For further explanation of the methods and more examples of the resulting maps, see our Github Pages website   πŸ”—

If upgrading from an older version, update old imports to import saliency.tf1 as saliency. We provide wrappers to make the framework-agnostic version compatible with TF1 models. (Example TF1 notebook)

Introduction

This repository contains code for the following saliency techniques:

*Developed by PAIR.

This list is by no means comprehensive. We are accepting pull requests to add new methods!

Download

# To install the core subpackage:
pip install saliency

# To install core and tf1 subpackages:
pip install saliency[tf1]

or for the development version:

git clone https://github.com/pair-code/saliency
cd saliency

Usage

The saliency library has two subpackages:

  • core uses a generic call_model_function which can be used with any ML framework.
  • tf1 accepts input/output tensors directly, and sets up the necessary graph operations for each method.

Core

Each saliency mask class extends from the CoreSaliency base class. This class contains the following methods:

  • GetMask(x_value, call_model_function, call_model_args=None): Returns a mask of the shape of non-batched x_value given by the saliency technique.
  • GetSmoothedMask(x_value, call_model_function, call_model_args=None, stdev_spread=.15, nsamples=25, magnitude=True): Returns a mask smoothed of the shape of non-batched x_value with the SmoothGrad technique.

The visualization module contains two methods for saliency visualization:

  • VisualizeImageGrayscale(image_3d, percentile): Marginalizes across the absolute value of each channel to create a 2D single channel image, and clips the image at the given percentile of the distribution. This method returns a 2D tensor normalized between 0 to 1.
  • VisualizeImageDiverging(image_3d, percentile): Marginalizes across the value of each channel to create a 2D single channel image, and clips the image at the given percentile of the distribution. This method returns a 2D tensor normalized between -1 to 1 where zero remains unchanged.

If the sign of the value given by the saliency mask is not important, then use VisualizeImageGrayscale, otherwise use VisualizeImageDiverging. See the SmoothGrad paper for more details on which visualization method to use.

call_model_function

call_model_function is how we pass inputs to a given model and receive the outputs necessary to compute saliency masks. The description of this method and expected output format is in the CoreSaliency description, as well as separately for each method.

Examples

This example iPython notebook showing these techniques is a good starting place.

Here is a condensed example of using IG+SmoothGrad with TensorFlow 2:

import saliency.core as saliency
import tensorflow as tf

...

# call_model_function construction here.
def call_model_function(x_value_batched, call_model_args, expected_keys):
	tape = tf.GradientTape()
	grads = np.array(tape.gradient(output_layer, images))
	return {saliency.INPUT_OUTPUT_GRADIENTS: grads}

...

# Load data.
image = GetImagePNG(...)

# Compute IG+SmoothGrad.
ig_saliency = saliency.IntegratedGradients()
smoothgrad_ig = ig_saliency.GetSmoothedMask(image, 
											call_model_function, 
                                            call_model_args=None)

# Compute a 2D tensor for visualization.
grayscale_visualization = saliency.VisualizeImageGrayscale(
    smoothgrad_ig)

TF1

Each saliency mask class extends from the TF1Saliency base class. This class contains the following methods:

  • __init__(graph, session, y, x): Constructor of the SaliencyMask. This can modify the graph, or sometimes create a new graph. Often this will add nodes to the graph, so this shouldn't be called continuously. y is the output tensor to compute saliency masks with respect to, x is the input tensor with the outer most dimension being batch size.
  • GetMask(x_value, feed_dict): Returns a mask of the shape of non-batched x_value given by the saliency technique.
  • GetSmoothedMask(x_value, feed_dict): Returns a mask smoothed of the shape of non-batched x_value with the SmoothGrad technique.

The visualization module contains two visualization methods:

  • VisualizeImageGrayscale(image_3d, percentile): Marginalizes across the absolute value of each channel to create a 2D single channel image, and clips the image at the given percentile of the distribution. This method returns a 2D tensor normalized between 0 to 1.
  • VisualizeImageDiverging(image_3d, percentile): Marginalizes across the value of each channel to create a 2D single channel image, and clips the image at the given percentile of the distribution. This method returns a 2D tensor normalized between -1 to 1 where zero remains unchanged.

If the sign of the value given by the saliency mask is not important, then use VisualizeImageGrayscale, otherwise use VisualizeImageDiverging. See the SmoothGrad paper for more details on which visualization method to use.

Examples

This example iPython notebook shows these techniques is a good starting place.

Another example of using GuidedBackprop with SmoothGrad from TensorFlow:

from saliency.tf1 import GuidedBackprop
from saliency.tf1 import VisualizeImageGrayscale
import tensorflow.compat.v1 as tf

...
# Tensorflow graph construction here.
y = logits[5]
x = tf.placeholder(...)
...

# Compute guided backprop.
# NOTE: This creates another graph that gets cached, try to avoid creating many
# of these.
guided_backprop_saliency = GuidedBackprop(graph, session, y, x)

...
# Load data.
image = GetImagePNG(...)
...

smoothgrad_guided_backprop =
    guided_backprop_saliency.GetMask(image, feed_dict={...})

# Compute a 2D tensor for visualization.
grayscale_visualization = visualization.VisualizeImageGrayscale(
    smoothgrad_guided_backprop)

Conclusion/Disclaimer

If you have any questions or suggestions for improvements to this library, please contact the owners of the PAIR-code/saliency repository.

This is not an official Google product.

Owner
PAIR code
Code repositories for projects from the People+AI Research (PAIR) Initiative
PAIR code
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (δΈ­ζ–‡η‰ˆ) Ongoing 2021.11.13 We are holding a competition β€”β€” Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
Deep Learning with PyTorch made easy πŸš€ !

Deep Learning with PyTorch made easy πŸš€ ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Codes for β€œA Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach β€” Metrics β€” Paper β€” Poster β€” Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022