This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Overview

Swin Transformer for Semantic Segmentation of satellite images

This repo contains the supported code and configuration files to reproduce semantic segmentation results of Swin Transformer. It is based on mmsegmentaion. In addition, we provide pre-trained models for the semantic segmentation of satellite images into basic classes (vegetation, buildings, roads). The full description of this work is available on arXiv.

Application on the Ampli ANR project

Goal

This repo was used as part of the Ampli ANR projet.

The goal was to do semantic segmentation on satellite photos to precisely identify the species and the density of the trees present in the pictures. However, due to the difficulty of recognizing the exact species of trees in the satellite photos, we decided to reduce the number of classes.

Dataset sources

To train and test the model, we used data provided by IGN which concerns French departments (Hautes-Alpes in our case). The following datasets have been used to extract the different layers:

  • BD Ortho for the satellite images
  • BD Foret v2 for vegetation data
  • BD Topo for buildings and roads

Important: note that the data precision is 50cm per pixel.

Initially, lots of classes were present in the dataset. We reduced the number of classes by merging them and finally retained the following ones:

  • Dense forest
  • Sparse forest
  • Moor
  • Herbaceous formation
  • Building
  • Road

The purpose of the two last classes is twofold. We first wanted to avoid trapping the training into false segmentation, because buildings and roads were visually present in the satellite images and were initially assigned a vegetation class. Second, the segmentation is more precise and gives more identification of the different image elements.

Dataset preparation

Our training and test datasets are composed of tiles prepared from IGN open data. Each tile has a 1000x1000 resolution representing a 500m x 500m footprint (the resolution is 50cm per pixel). We mainly used data from the Hautes-Alpes department, and we took spatially spaced data to have as much diversity as possible and to limit the area without information (unfortunately, some places lack information).

The file structure of the dataset is as follows:

├── data
│   ├── ign
│   │   ├── annotations
│   │   │   ├── training
│   │   │   │   ├── xxx.png
│   │   │   │   ├── yyy.png
│   │   │   │   ├── zzz.png
│   │   │   ├── validation
│   │   ├── images
│   │   │   ├── training
│   │   │   │   ├── xxx.png
│   │   │   │   ├── yyy.png
│   │   │   │   ├── zzz.png
│   │   │   ├── validation

The dataset is available on download here.

Information on the training

During the training, a ImageNet-22K pretrained model was used (available here) and we added weights on each class because the dataset was not balanced in classes distribution. The weights we have used are:

  • Dense forest => 0.5
  • Sparse forest => 1.31237
  • Moor => 1.38874
  • Herbaceous formation => 1.39761
  • Building => 1.5
  • Road => 1.47807

Main results

Backbone Method Crop Size Lr Schd mIoU config model
Swin-L UPerNet 384x384 60K 54.22 config model

Here are some comparison between the original segmentation and the segmentation that has been obtained after the training (Hautes-Alpes dataset):

Original segmentation Segmentation after training

We have also tested the model on satellite photos from another French department to see if the trained model generalizes to other locations. We chose Cantal and here are a few samples of the obtained results:

Original segmentation Segmentation after training

These latest results show that the model is capable of producing a segmentation even if the photos are located in another department and even if there are a lot of pixels without information (in black), which is encouraging.

Limitations

As illustrated in the previous images that the results are not perfect. This is caused by the inherent limits of the data used during the training phase. The two main limitations are:

  • The satellite photos and the original segmentation were not made at the same time, so the segmentation is not always accurate. For example, we can see it in the following images: a zone is segmented as "dense forest" even if there are not many trees (that is why the segmentation after training, on the right, classed it as "sparse forest"):
Original segmentation Segmentation after training
  • Sometimes there are zones without information (represented in black) in the dataset. Fortunately, we can ignore them during the training phase, but we also lose some information, which is a problem: we thus removed the tiles that had more than 50% of unidentified pixels to try to improve the training.

Usage

Installation

Please refer to get_started.md for installation and dataset preparation.

Notes: During the installation, it is important to:

  • Install MMSegmentation in dev mode:
git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
pip install -e .
  • Copy the mmcv_custom and mmseg folders into the mmsegmentation folder

Inference

The pre-trained model (i.e. checkpoint file) for satellite image segmentation is available for download here.

# single-gpu testing
python tools/test.py <CONFIG_FILE> <SEG_CHECKPOINT_FILE> --eval mIoU

# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <SEG_CHECKPOINT_FILE> <GPU_NUM> --eval mIoU

# multi-gpu, multi-scale testing
tools/dist_test.sh <CONFIG_FILE> <SEG_CHECKPOINT_FILE> <GPU_NUM> --aug-test --eval mIoU

Example on the Ampli ANR project:

# Evaluate checkpoint on a single GPU
python tools/test.py configs/swin/config_upernet_swin_large_patch4_window12_384x384_60k_ign.py checkpoints/ign_60k_swin_large_patch4_window12_384.pth --eval mIoU

# Display segmentation results
python tools/test.py configs/swin/config_upernet_swin_large_patch4_window12_384x384_60k_ign.py checkpoints/ign_60k_swin_large_patch4_window12_384.pth --show

Training

To train with pre-trained models, run:

# single-gpu training
python tools/train.py <CONFIG_FILE> --options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments] 

Example on the Ampli ANR project with the ImageNet-22K pretrained model (available here) :

python tools/train.py configs/swin/config_upernet_swin_large_patch4_window12_384x384_60k_ign.py --options model.pretrained="./model/swin_large_patch4_window12_384_22k.pth"

Notes:

  • use_checkpoint is used to save GPU memory. Please refer to this page for more details.
  • The default learning rate and training schedule is for 8 GPUs and 2 imgs/gpu.

Citing Swin Transformer

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}

Citing this work

See the complete description of this work in the dedicated arXiv paper. If you use this work, please cite it:

@misc{guerin2021satellite,
      title={Satellite Image Semantic Segmentation}, 
      author={Eric Guérin and Killian Oechslin and Christian Wolf and Benoît Martinez},
      year={2021},
      eprint={2110.05812},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Other Links

Image Classification: See Swin Transformer for Image Classification.

Object Detection: See Swin Transformer for Object Detection.

Self-Supervised Learning: See MoBY with Swin Transformer.

Video Recognition, See Video Swin Transformer.

Owner
INSA Lyon - IT Engineering
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
Video-based open-world segmentation

UVO_Challenge Team Alpes_runner Solutions This is an official repo for our UVO Challenge solutions for Image/Video-based open-world segmentation. Our

Yuming Du 84 Dec 22, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022