This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Overview

Swin Transformer for Semantic Segmentation of satellite images

This repo contains the supported code and configuration files to reproduce semantic segmentation results of Swin Transformer. It is based on mmsegmentaion. In addition, we provide pre-trained models for the semantic segmentation of satellite images into basic classes (vegetation, buildings, roads). The full description of this work is available on arXiv.

Application on the Ampli ANR project

Goal

This repo was used as part of the Ampli ANR projet.

The goal was to do semantic segmentation on satellite photos to precisely identify the species and the density of the trees present in the pictures. However, due to the difficulty of recognizing the exact species of trees in the satellite photos, we decided to reduce the number of classes.

Dataset sources

To train and test the model, we used data provided by IGN which concerns French departments (Hautes-Alpes in our case). The following datasets have been used to extract the different layers:

  • BD Ortho for the satellite images
  • BD Foret v2 for vegetation data
  • BD Topo for buildings and roads

Important: note that the data precision is 50cm per pixel.

Initially, lots of classes were present in the dataset. We reduced the number of classes by merging them and finally retained the following ones:

  • Dense forest
  • Sparse forest
  • Moor
  • Herbaceous formation
  • Building
  • Road

The purpose of the two last classes is twofold. We first wanted to avoid trapping the training into false segmentation, because buildings and roads were visually present in the satellite images and were initially assigned a vegetation class. Second, the segmentation is more precise and gives more identification of the different image elements.

Dataset preparation

Our training and test datasets are composed of tiles prepared from IGN open data. Each tile has a 1000x1000 resolution representing a 500m x 500m footprint (the resolution is 50cm per pixel). We mainly used data from the Hautes-Alpes department, and we took spatially spaced data to have as much diversity as possible and to limit the area without information (unfortunately, some places lack information).

The file structure of the dataset is as follows:

├── data
│   ├── ign
│   │   ├── annotations
│   │   │   ├── training
│   │   │   │   ├── xxx.png
│   │   │   │   ├── yyy.png
│   │   │   │   ├── zzz.png
│   │   │   ├── validation
│   │   ├── images
│   │   │   ├── training
│   │   │   │   ├── xxx.png
│   │   │   │   ├── yyy.png
│   │   │   │   ├── zzz.png
│   │   │   ├── validation

The dataset is available on download here.

Information on the training

During the training, a ImageNet-22K pretrained model was used (available here) and we added weights on each class because the dataset was not balanced in classes distribution. The weights we have used are:

  • Dense forest => 0.5
  • Sparse forest => 1.31237
  • Moor => 1.38874
  • Herbaceous formation => 1.39761
  • Building => 1.5
  • Road => 1.47807

Main results

Backbone Method Crop Size Lr Schd mIoU config model
Swin-L UPerNet 384x384 60K 54.22 config model

Here are some comparison between the original segmentation and the segmentation that has been obtained after the training (Hautes-Alpes dataset):

Original segmentation Segmentation after training

We have also tested the model on satellite photos from another French department to see if the trained model generalizes to other locations. We chose Cantal and here are a few samples of the obtained results:

Original segmentation Segmentation after training

These latest results show that the model is capable of producing a segmentation even if the photos are located in another department and even if there are a lot of pixels without information (in black), which is encouraging.

Limitations

As illustrated in the previous images that the results are not perfect. This is caused by the inherent limits of the data used during the training phase. The two main limitations are:

  • The satellite photos and the original segmentation were not made at the same time, so the segmentation is not always accurate. For example, we can see it in the following images: a zone is segmented as "dense forest" even if there are not many trees (that is why the segmentation after training, on the right, classed it as "sparse forest"):
Original segmentation Segmentation after training
  • Sometimes there are zones without information (represented in black) in the dataset. Fortunately, we can ignore them during the training phase, but we also lose some information, which is a problem: we thus removed the tiles that had more than 50% of unidentified pixels to try to improve the training.

Usage

Installation

Please refer to get_started.md for installation and dataset preparation.

Notes: During the installation, it is important to:

  • Install MMSegmentation in dev mode:
git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
pip install -e .
  • Copy the mmcv_custom and mmseg folders into the mmsegmentation folder

Inference

The pre-trained model (i.e. checkpoint file) for satellite image segmentation is available for download here.

# single-gpu testing
python tools/test.py <CONFIG_FILE> <SEG_CHECKPOINT_FILE> --eval mIoU

# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <SEG_CHECKPOINT_FILE> <GPU_NUM> --eval mIoU

# multi-gpu, multi-scale testing
tools/dist_test.sh <CONFIG_FILE> <SEG_CHECKPOINT_FILE> <GPU_NUM> --aug-test --eval mIoU

Example on the Ampli ANR project:

# Evaluate checkpoint on a single GPU
python tools/test.py configs/swin/config_upernet_swin_large_patch4_window12_384x384_60k_ign.py checkpoints/ign_60k_swin_large_patch4_window12_384.pth --eval mIoU

# Display segmentation results
python tools/test.py configs/swin/config_upernet_swin_large_patch4_window12_384x384_60k_ign.py checkpoints/ign_60k_swin_large_patch4_window12_384.pth --show

Training

To train with pre-trained models, run:

# single-gpu training
python tools/train.py <CONFIG_FILE> --options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments] 

Example on the Ampli ANR project with the ImageNet-22K pretrained model (available here) :

python tools/train.py configs/swin/config_upernet_swin_large_patch4_window12_384x384_60k_ign.py --options model.pretrained="./model/swin_large_patch4_window12_384_22k.pth"

Notes:

  • use_checkpoint is used to save GPU memory. Please refer to this page for more details.
  • The default learning rate and training schedule is for 8 GPUs and 2 imgs/gpu.

Citing Swin Transformer

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}

Citing this work

See the complete description of this work in the dedicated arXiv paper. If you use this work, please cite it:

@misc{guerin2021satellite,
      title={Satellite Image Semantic Segmentation}, 
      author={Eric Guérin and Killian Oechslin and Christian Wolf and Benoît Martinez},
      year={2021},
      eprint={2110.05812},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Other Links

Image Classification: See Swin Transformer for Image Classification.

Object Detection: See Swin Transformer for Object Detection.

Self-Supervised Learning: See MoBY with Swin Transformer.

Video Recognition, See Video Swin Transformer.

Owner
INSA Lyon - IT Engineering
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022