Interactive dimensionality reduction for large datasets

Related tags

Deep Learningblossom
Overview

BlosSOM 🌼

BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimensional datasets, and produce great-looking 2-dimensional visualizations.

WARNING: BlosSOM is still under development, some stuff may not work right, but things will magically improve without notice. Feel free to open an issue if something looks wrong.

screenshot

BlosSOM was developed at the MFF UK Prague, in cooperation with IOCB Prague.

MFF logoIOCB logo

Overview

BlosSOM creates a landmark-based model of the dataset, and dynamically projects all dataset point to your screen (using EmbedSOM). Several other algorithms and tools are provided to manage the landmarks; a quick overview follows:

  • High-dimensional landmark positioning:
    • Self-organizing maps
    • k-Means
  • 2D landmark positioning
    • k-NN graph generation (only adds edges, not vertices)
    • force-based graph layouting
    • dynamic t-SNE
  • Dimensionality reduction
    • EmbedSOM
    • CUDA EmbedSOM (with roughly 500x speedup, enabling smooth display of a few millions of points)
  • Manual landmark position optimization
  • Visualization settings (colors, transparencies, cluster coloring, ...)
  • Dataset transformations and dimension scaling
  • Import from matrix-like data files
    • FCS3.0 (Flow Cytometry Standard files)
    • TSV (Tab-separated CSV)
  • Export of the data for plotting

Compiling and running BlosSOM

You will need cmake build system and SDL2.

For CUDA EmbedSOM to work, you need the NVIDIA CUDA toolkit. Append -DBUILD_CUDA=1 to cmake options to enable the CUDA version.

Windows (Visual Studio 2019)

Dependencies

The project requires SDL2 as an external dependency:

  1. install vcpkg tool and remember your vcpkg directory
  2. install SDL: vcpkg install SDL2:x64-windows

Compilation

git submodule init
git submodule update

mkdir build
cd build

# You need to fix the path to vcpkg in the following command:
cmake .. -G "Visual Studio 16 2019" -A x64 -DCMAKE_BUILD_TYPE="Release" -DCMAKE_INSTALL_PREFIX=./inst -DCMAKE_TOOLCHAIN_FILE=your-vcpkg-clone-directory/scripts/buildsystems/vcpkg.cmake

cmake --build . --config Release
cmake --install . --config Release

Running

Open Visual Studio solution BlosSOM.sln, set blossom as startup project, set configuration to Release and run the project.

Linux (and possibly other unix-like systems)

Dependencies

The project requires SDL2 as an external dependency. Install libsdl2-dev (on Debian-based systems) or SDL2-devel (on Red Hat-based systems), or similar (depending on the Linux distribution). You should be able to install cmake package the same way.

Compilation

git submodule init
git submodule update

mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=./inst    # or any other directory
make install                              # use -j option to speed up the build

Running

./inst/bin/blossom

Documentation

Quickstart

  1. Click on the "plus" button on the bottom right side of the window
  2. Choose Open file (the first button from the top) and open a file from the demo_data/ directory
  3. You can now add and delete landmarks using ctrl+mouse click, and drag them around.
  4. Use the tools and settings available under the "plus" button to optimize the landmark positions and get a better visualization.

See the HOWTO for more details and hints.

Performance and CUDA

If you pass -DBUILD_CUDA=1 to the cmake commands, you will get extra executable called blossom_cuda (or blossom_cuda.exe, on Windows).

The 2 versions of BlosSOM executable differ mainly in the performance of EmbedSOM projection, which is more than 100× faster on GPUs than on CPUs. If the dataset gets large, only a fixed-size slice of the dataset gets processed each frame (e.g., at most 1000 points in case of CPU) to keep the framerate in a usable range. The defaults in BlosSOM should work smoothly for many use-cases (defaulting at 1k points per frame on CPU and 50k points per frame on GPU).

If required (e.g., if you have a really fast GPU), you may modify the constants in the corresponding source files, around the call sites of clean_range(), which is the function that manages the round-robin refreshing of the data. Functionality that dynamically chooses the best data-crunching rate is being implemented and should be available soon.

License

BlosSOM is licensed under GPLv3 or later. Several small libraries bundled in the repository are licensed with MIT-style licenses.

Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Source Code of NeurIPS21 paper: Recognizing Vector Graphics without Rasterization

YOLaT-VectorGraphicsRecognition This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without

Microsoft 49 Dec 20, 2022
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022