Interactive dimensionality reduction for large datasets

Related tags

Deep Learningblossom
Overview

BlosSOM ๐ŸŒผ

BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimensional datasets, and produce great-looking 2-dimensional visualizations.

WARNING: BlosSOM is still under development, some stuff may not work right, but things will magically improve without notice. Feel free to open an issue if something looks wrong.

screenshot

BlosSOM was developed at the MFF UK Prague, in cooperation with IOCB Prague.

MFF logoโ€‡ IOCB logoโ€‡

Overview

BlosSOM creates a landmark-based model of the dataset, and dynamically projects all dataset point to your screen (using EmbedSOM). Several other algorithms and tools are provided to manage the landmarks; a quick overview follows:

  • High-dimensional landmark positioning:
    • Self-organizing maps
    • k-Means
  • 2D landmark positioning
    • k-NN graph generation (only adds edges, not vertices)
    • force-based graph layouting
    • dynamic t-SNE
  • Dimensionality reduction
    • EmbedSOM
    • CUDA EmbedSOM (with roughly 500x speedup, enabling smooth display of a few millions of points)
  • Manual landmark position optimization
  • Visualization settings (colors, transparencies, cluster coloring, ...)
  • Dataset transformations and dimension scaling
  • Import from matrix-like data files
    • FCS3.0 (Flow Cytometry Standard files)
    • TSV (Tab-separated CSV)
  • Export of the data for plotting

Compiling and running BlosSOM

You will need cmake build system and SDL2.

For CUDA EmbedSOM to work, you need the NVIDIA CUDA toolkit. Append -DBUILD_CUDA=1 to cmake options to enable the CUDA version.

Windows (Visual Studio 2019)

Dependencies

The project requires SDL2 as an external dependency:

  1. install vcpkg tool and remember your vcpkg directory
  2. install SDL: vcpkg install SDL2:x64-windows

Compilation

git submodule init
git submodule update

mkdir build
cd build

# You need to fix the path to vcpkg in the following command:
cmake .. -G "Visual Studio 16 2019" -A x64 -DCMAKE_BUILD_TYPE="Release" -DCMAKE_INSTALL_PREFIX=./inst -DCMAKE_TOOLCHAIN_FILE=your-vcpkg-clone-directory/scripts/buildsystems/vcpkg.cmake

cmake --build . --config Release
cmake --install . --config Release

Running

Open Visual Studio solution BlosSOM.sln, set blossom as startup project, set configuration to Release and run the project.

Linux (and possibly other unix-like systems)

Dependencies

The project requires SDL2 as an external dependency. Install libsdl2-dev (on Debian-based systems) or SDL2-devel (on Red Hat-based systems), or similar (depending on the Linux distribution). You should be able to install cmake package the same way.

Compilation

git submodule init
git submodule update

mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=./inst    # or any other directory
make install                              # use -j option to speed up the build

Running

./inst/bin/blossom

Documentation

Quickstart

  1. Click on the "plus" button on the bottom right side of the window
  2. Choose Open file (the first button from the top) and open a file from the demo_data/ directory
  3. You can now add and delete landmarks using ctrl+mouse click, and drag them around.
  4. Use the tools and settings available under the "plus" button to optimize the landmark positions and get a better visualization.

See the HOWTO for more details and hints.

Performance and CUDA

If you pass -DBUILD_CUDA=1 to the cmake commands, you will get extra executable called blossom_cuda (or blossom_cuda.exe, on Windows).

The 2 versions of BlosSOM executable differ mainly in the performance of EmbedSOM projection, which is more than 100ร— faster on GPUs than on CPUs. If the dataset gets large, only a fixed-size slice of the dataset gets processed each frame (e.g., at most 1000 points in case of CPU) to keep the framerate in a usable range. The defaults in BlosSOM should work smoothly for many use-cases (defaulting at 1k points per frame on CPU and 50k points per frame on GPU).

If required (e.g., if you have a really fast GPU), you may modify the constants in the corresponding source files, around the call sites of clean_range(), which is the function that manages the round-robin refreshing of the data. Functionality that dynamically chooses the best data-crunching rate is being implemented and should be available soon.

License

BlosSOM is licensed under GPLv3 or later. Several small libraries bundled in the repository are licensed with MIT-style licenses.

Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋Š” ํฌ๊ฒŒ 6๋‹จ๊ณ„๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค. STEP 0: Input Image Predict ํ•  ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. STEP 1: Make Black and White Image STEP 1 ์€ ์ž…๋ ฅ๋ฐ›์€ ์ด๋ฏธ์ง€์˜ ๊ธ€์ž๋ฅผ ํ‘์ƒ‰์œผ๋กœ, ๋ฐฐ๊ฒฝ์„

Juwan HAN 1 Feb 09, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Gรผney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (ๅˆ˜่ทฏๅนณ) 196 Jan 05, 2023
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023