LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Overview

Query Selector

Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sparse attention Transformer algorithm that is especially suitable for long term time series forecasting

Depencency

Python            3.7.9
deepspeed         0.4.0
numpy             1.20.3
pandas            1.2.4
scipy             1.6.3
tensorboardX      1.8
torch             1.7.1
torchaudio        0.7.2
torchvision       0.8.2
tqdm              4.61.0

Results on ETT dataset

Univariate

Data Prediction len Informer MSE Informer MAE Trans former MSE Trans former MAE Query Selector MSE Query Selector MAE MSE ratio
ETTh1 24 0.0980 0.2470 0.0548 0.1830 0.0436 0.1616 0.445
ETTh1 48 0.1580 0.3190 0.0740 0.2144 0.0721 0.2118 0.456
ETTh1 168 0.1830 0.3460 0.1049 0.2539 0.0935 0.2371 0.511
ETTh1 336 0.2220 0.3870 0.1541 0.3201 0.1267 0.2844 0.571
ETTh1 720 0.2690 0.4350 0.2501 0.4213 0.2136 0.3730 0.794
ETTh2 24 0.0930 0.2400 0.0999 0.2479 0.0843 0.2239 0.906
ETTh2 48 0.1550 0.3140 0.1218 0.2763 0.1117 0.2622 0.721
ETTh2 168 0.2320 0.3890 0.1974 0.3547 0.1753 0.3322 0.756
ETTh2 336 0.2630 0.4170 0.2191 0.3805 0.2088 0.3710 0.794
ETTh2 720 0.2770 0.4310 0.2853 0.4340 0.2585 0.4130 0.933
ETTm1 24 0.0300 0.1370 0.0143 0.0894 0.0139 0.0870 0.463
ETTm1 48 0.0690 0.2030 0.0328 0.1388 0.0342 0.1408 0.475
ETTm1 96 0.1940 0.2030 0.0695 0.2085 0.0702 0.2100 0.358
ETTm1 288 0.4010 0.5540 0.1316 0.2948 0.1548 0.3240 0.328
ETTm1 672 0.5120 0.6440 0.1728 0.3437 0.1735 0.3427 0.338

Multivariate

Data Prediction len Informer MSE Informer MAE Trans former MSE Trans former MAE Query Selector MSE Query Selector MAE MSE ratio
ETTh1 24 0.5770 0.5490 0.4496 0.4788 0.4226 0.4627 0.732
ETTh1 48 0.6850 0.6250 0.4668 0.4968 0.4581 0.4878 0.669
ETTh1 168 0.9310 0.7520 0.7146 0.6325 0.6835 0.6088 0.734
ETTh1 336 1.1280 0.8730 0.8321 0.7041 0.8503 0.7039 0.738
ETTh1 720 1.2150 0.8960 1.1080 0.8399 1.1150 0.8428 0.912
ETTh2 24 0.7200 0.6650 0.4237 0.5013 0.4124 0.4864 0.573
ETTh2 48 1.4570 1.0010 1.5220 0.9488 1.4074 0.9317 0.966
ETTh2 168 3.4890 1.5150 1.6225 0.9726 1.7385 1.0125 0.465
ETTh2 336 2.7230 1.3400 2.6617 1.2189 2.3168 1.1859 0.851
ETTh2 720 3.4670 1.4730 3.1805 1.3668 3.0664 1.3084 0.884
ETTm1 24 0.3230 0.3690 0.3150 0.3886 0.3351 0.3875 0.975
ETTm1 48 0.4940 0.5030 0.4454 0.4620 0.4726 0.4702 0.902
ETTm1 96 0.6780 0.6140 0.4641 0.4823 0.4543 0.4831 0.670
ETTm1 288 1.0560 0.7860 0.6814 0.6312 0.6185 0.5991 0.586
ETTm1 672 1.1920 0.9260 1.1365 0.8572 1.1273 0.8412 0.946

State Of Art

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

Citation

@misc{klimek2021longterm,
      title={Long-term series forecasting with Query Selector -- efficient model of sparse attention}, 
      author={Jacek Klimek and Jakub Klimek and Witold Kraskiewicz and Mateusz Topolewski},
      year={2021},
      eprint={2107.08687},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Contact

If you have any questions please contact us by email - [email protected]

Owner
MORAI
MORAI
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 May 27, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022