PyArmadillo: an alternative approach to linear algebra in Python

Overview

PyArmadillo

PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use. It aims to provide a high-level syntax and functionality deliberately similar to Matlab/Octave, allowing mathematical operations to be expressed in a familiar and natural manner. PyArmadillo provides objects for matrices and cubes, as well as over 200 associated functions for manipulating data stored in the objects. All functions are accessible in one flat structure. Integer, floating point and complex numbers are supported. Various matrix factorisations are provided through integration with LAPACK, or one of its high performance drop-in replacements such as Intel MKL or OpenBLAS.

While frameworks such as NumPy and SciPy are available for Python, they tend to be unnecessarily verbose and cumbersome to use from a linear algebra point of view. These frameworks require users to handle data types that are not immediately intuitive, have a structure that complicates the use of common functions, and use syntax that considerably differs from Matlab.

This library is co-led by Jason Rumengan, me and Conrad Sanderson.

You might also like...
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A python library to build Model Trees with Linear Models at the leaves.
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Comments
  • may you do me a favor. i wanna transfer matlab function to python in pyarma

    may you do me a favor. i wanna transfer matlab function to python in pyarma

    matlab function ` function output =NN_F(input)

    layer_nodes_num=[200,200,150,150]; bias=0.00001; %input=traindata(:,1); pre_layer_nodes_num=length(input); pre_layer_nodes_value=input'; % input for l=1:length(layer_nodes_num) > curr_layer_nodes_num=layer_nodes_num(l);

    clear curr_layer_nodes_value;
    for it=1:curr_layer_nodes_num
        curr_node_input_weight=randn(1,pre_layer_nodes_num);
        xx=sum(pre_layer_nodes_value.*curr_node_input_weight);
        curr_layer_nodes_value(it)=tanh(xx/2.5);
    end
    pre_layer_nodes_value=curr_layer_nodes_value;
    pre_layer_nodes_num=curr_layer_nodes_num;
    

    end output=curr_layer_nodes_value; end `

    opened by luyifanlu 6
  • Need thoughts on v0.500.0!

    Need thoughts on v0.500.0!

    Hi community,

    Thanks for the support! ~~v0.500.0 is in preparation.~~

    ~~Feel free to give out some thoughts on PyArmadillo v0.400.0 after having a play!~~

    We are happy to announce v0.500.0 is released! 🥳 🥳 🥳

    You are more than welcome to use our library in your own projects and other work :D

    opened by terryyz 6
Releases(v0.500.0)
  • v0.500.0(Feb 10, 2021)

    v0.500.0 Updates:

    • instances of mat and cube are initialised to contain zero-valued elements by default
    • added standalone zeros(), ones(), randu(), randn(), eye()
    • added pyarma_rng.set_seed(value) and pyarma_rng.set_seed_random()
    • added extra forms for lu(), qr(), qr_econ(), qz(), svd_econ()
    • added subscripting for size objects
    • range() renamed to spread() to prevent conflicts with built-in range() in Python
    • for solve(), solve_opts_* flags renamed to solve_opts.* (eg. solve_opts_fast is now solve_opts.fast)
    • for mat and cube constructors, fill_* flags renamed to fill.* (eg. fill_zeros is now fill.zeros)

    Download

    For downloading the packages, please visit here

    Source code(tar.gz)
    Source code(zip)
  • v0.490.0(Feb 8, 2021)

  • v0.400.0(Feb 3, 2021)

    Installation Notes

    • See the README file in the .tar.xz package for full installation instructions

    • Installation requirements:

      • at least Python 3.6; the minimum recommended version is Python 3.8
      • a C++ compiler that supports at least the C++11 standard
      • at least 8 GB of RAM
      • 64-bit CPU, preferably with 4+ cores
      • OpenBLAS and LAPACK
    • If you encounter any bugs or regressions, please report them

    • If you use PyArmadillo in your research and/or software, please cite the associated papers; citations are useful for the continued development and maintenance of the library

    • Linux based operating systems (eg. Fedora, Ubuntu, CentOS, Red Hat, Debian, etc)

      • Before installing PyArmadillo, first install OpenBLAS, LAPACK, Python 3, and pip3, along with the corresponding development/header files

      • On CentOS 8 / RHEL 8, the CentOS PowerTools repository may first need to be enabled: dnf config-manager --set-enabled powertools

      • Recommended packages to install before installing PyArmadillo: Fedora, CentOS, RHEL: gcc-c++, libstdc++-devel, openblas-devel, lapack-devel, python3-devel, python3-pip Ubuntu and Debian: g++, libopenblas-dev, liblapack-dev, python3-dev, python3-pip

    • macOS

      • Before installing PyArmadillo, install Xcode (version 8 or later) and then type the following command in a terminal window: xcode-select --install

      • Xcode command-line tools include the Python 3 development files, but pip3 needs to be updated: pip3 install --user --upgrade pip

      • The "Accelerate" framework is used for accessing BLAS and LAPACK functions; see the README file in the package for more information

    • Windows (x64)

      • Before installing Pyarmadillo, fist install Microsoft Visual Studio (2019 or later) and use the x64 Native Tools Command Prompt

      • The PyArmadillo package contains pre-compiled OpenBLAS 0.3.10, which is used for accessing BLAS and LAPACK functions

      • Alternative implementations and/or distributions of BLAS and LAPACK are available at:

        • http://software.intel.com/en-us/intel-mkl/
        • http://icl.cs.utk.edu/lapack-for-windows/lapack/
        • http://ylzhao.blogspot.com.au/2013/10/blas-lapack-precompiled-binaries-for.html
      • Caveat: 32-bit Windows (x86) is currently not supported

      • Caveat: for any high performance scientific/engineering workloads, we strongly recommend using a Linux based operating system.

    Source code(tar.gz)
    Source code(zip)
    pyarmadillo-0.400.0.tar.xz(6.56 MB)
Owner
Terry Zhuo
Undergraduate @UNSWComputing; RA @MonashNLP
Terry Zhuo
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022