[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

Overview

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

This is the official implementation of our ICCV 2021 paper

News

There maybe some bugs in the current public code and I am trying my best to solve them.

Contact me if you have any question.

TODO

  • Supplement 2D/3D visualization code.

Getting Started

Clone the repository:

git clone https://github.com/IceTTTb/PlaneTR3D.git

We use Python 3.6 and PyTorch 1.6.0 in our implementation, please install dependencies:

conda create -n planeTR python=3.6
conda activate planeTR
conda install pytorch=1.6.0 torchvision=0.7.0 torchaudio cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Data Preparation

We train and test our network on the plane dataset created by PlaneNet. We follow PlaneAE to convert the .tfrecords to .npz files. Please refer to PlaneAE for more details.

We generate line segments using the state-of-the-art line segment detection algorithm HAWP with their pretrained model. The processed line segments data we used can be downloaded here.

The structure of the data folder should be

plane_data/
  --train/*.npz
  --train_img/*
  --val/*.npz
  --val_img/*
  --train.txt
  --val.txt

Training

Download the pretrained model of HRNet and place it under the 'ckpts/' folder.

Change the 'root_dir' in config files to the path where you save the data.

Run the following command to train our network on one GPU:

CUDA_VISIBLE_DEVICES=0 python train_planeTR.py

Run the following command to train our network on multiple GPUs:

CUDA_VISIBLE_DEVICES=0,1,2 python -m torch.distributed.launch --nproc_per_node=3 --master_port 295025 train_planeTR.py

Evaluation

Download the pretrained model here and place it under the 'ckpts/' folder.

Change the 'resume_dir' in 'config_planeTR_eval.yaml' to the path where you save the weight file.

Change the 'root_dir' in config files to the path where you save the data.

Run the following command to evaluate the performance:

CUDA_VISIBLE_DEVICES=0 python eval_planeTR.py

Citations

If you find our work useful in your research, please consider citing:

@inproceedings{tan2021planeTR,
title={PlaneTR: Structure-Guided Transformers for 3D Plane Recovery},
author={Tan, Bin and Xue, Nan and Bai, Song and Wu, Tianfu and Xia, Gui-Song},
booktitle = {International Conference on Computer Vision},
year={2021}
}

Contact

[email protected]

https://xuenan.net/

Acknowledgements

We thank the authors of PlaneAE, PlaneRCNN, interplane and DETR. Our implementation is heavily built upon their codes.

This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023