Basics of 2D and 3D Human Pose Estimation.

Overview

Human Pose Estimation 101

If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolved, check out these articles I published on 2D Pose Estimation and 3D Pose Estimation

Table of Contents

Basics

  • Defined as the problem of localization of human joints (or) keypoints
  • A rigid body consists of joints and rigid parts. A body with strong articulation is a body with strong contortion.
  • Pose Estimation is the search for a specific pose in space of all articulated poses
  • Number of keypoints varies with dataset - LSP has 14, MPII has 16, 16 are used in Human3.6m
  • Classifed into 2D and 3D Pose Estimation
    • 2D Pose Estimation
    • Estimate a 2D pose (x,y) coordinates for each joint in pixel space from a RGB image
    • 3D Pose Estimation
    • Estimate a 3D pose (x,y,z) coordinates in metric space from a RGB image, or in previous works, data from a RGB-D sensor. (However, research in the past few years is heavily focussed on generating 3D poses from 2D images / 2D videos)

Loss

  • Most commonly used loss function - Mean Squared Error, MSE(Least Squares Loss)
  • This is a regression problem. The model will try to regress to the the correct coordinates, i.e move to the ground truth coordinatate’s in small increments. The model is trained to output continuous coordinates using a Mean Squared Error loss function

Evaluation metrics

Percentage of Correct Parts - PCP

  • A limb is considered detected and a correct part if the distance between the two predicted joint locations and the true limb joint locations is at most half of the limb length (PCP at 0.5 )
  • Measures detection rate of limbs
  • Cons - penalizes shorter limbs
  • Calculation
    • For a specific part, PCP = (No. of correct parts for entire dataset) / (No. of total parts for entire dataset)
    • Take a dataset with 10 images and 1 pose per image. Each pose has 8 parts - ( upper arm, lower arm, upper leg, lower leg ) x2
    • No of upper arms = 10 * 2 = 20
    • No of lower arms = 20
    • No of lower legs = No of upper legs = 20
    • If upper arm is detected correct for 17 out of the 20 upper arms i.e 17 ( 10 right arms and 7 left) → PCP = 17/20 = 85%
  • Higher the better

Percentage of Correct Key-points - PCK

  • Detected joint is considered correct if the distance between the predicted and the true joint is within a certain threshold (threshold varies)
  • [email protected] is when the threshold = 50% of the head bone link
  • [email protected] == Distance between predicted and true joint < 0.2 * torso diameter
  • Sometimes 150 mm is taken as the threshold
  • Head, shoulder, Elbow, Wrist, Hip, Knee, Ankle → Keypoints
  • PCK is used for 2D and 3D (PCK3D)
  • Higher the better

Percentage of Detected Joints - PDJ

  • Detected joint is considered correct if the distance between the predicted and the true joint is within a certain fraction of the torso diameter
  • Alleviates the shorter limb problem since shorter limbs have smaller torsos
  • PDJ at 0.2 → Distance between predicted and true join < 0.2 * torso diameter
  • Typically used for 2D Pose Estimation
  • Higher the better

Mean Per Joint Position Error - MPJPE

  • Per joint position error = Euclidean distance between ground truth and prediction for a joint
  • Mean per joint position error = Mean of per joint position error for all k joints (Typically, k = 16)
  • Calculated after aligning the root joints (typically the pelvis) of the estimated and groundtruth 3D pose.
  • PA MPJPE
    • Procrustes analysis MPJPE.
    • MPJPE calculated after the estimated 3D pose is aligned to the groundtruth by the Procrustes method
    • Procrustes method is simply a similarity transformation
  • Lower the better
  • Used for 3D Pose Estimation

AUC

Important Applications

  • Activity Analysis
  • Human-Computer Interaction (HCI)
  • Virtual Reality
  • Augmented Reality
  • Amazon Go presents an important domain for the application of Human Pose Estimation. Cameras track and recognize people and their actions, for which Pose Estimation is an important component. Entities relying on services that track and measure human activities rely heavily on human Pose Estimation

Informative roadmap on 2D Human Pose Estimation research

Owner
Sudharshan Chandra Babu
Machine Learning Engineer
Sudharshan Chandra Babu
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022