PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

Overview

PyGRANSO

PyGRANSO

PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

Please check https://ncvx.org/PyGRANSO for detailed instructions (introduction, installation, settings, examples...).

PyGRANSO is AGPL v3.0 licensed, but it also contains a small portion of GPL code. Please see the LICENSE_INFO folder for more information.

Brief Introduction

Optimizing nonconvex (NCVX) problems, especially nonsmooth and constrained ones, is an essential part of machine learning. However, it can be hard to reliably solve such problems without optimization expertise. Existing general-purpose NCVX optimization packages are powerful but typically cannot handle nonsmoothness. GRANSO is among the first optimization solvers targeting general nonsmooth NCVX problems with nonsmooth constraints, but, as it is implemented in MATLAB and requires the user to provide analytical gradients, GRANSO is often not a convenient choice in machine learning (especially deep learning) applications. To greatly lower the technical barrier, we introduce a new software package called NCVX, whose initial release contains the solver PyGRANSO, a PyTorch-enabled port of GRANSO incorporating auto-differentiation, GPU acceleration, tensor input, and support for new QP solvers. NCVX is built on freely available and widely used open-source frameworks, and as a highlight, can solve general constrained deep learning problems, the first of its kind.

Installation

NOTE: The installation process is tested on Ubuntu 20.04

Installing PyGRANSO is simple. Here is a step-by-step instruction:

  1. Install Python >= 3.9

  2. Get the most recent PyGRANSO package (including examples and requirements file):

     git clone https://github.com/sun-umn/PyGRANSO.git
     cd PyGRANSO
    
  3. Install PyGRANSO solver from PyPI:

    pip install pygranso==1.0.0.dev2
    
  4. Install Dependencies from PyPI:

    OS: Linux OR Windows; Compute Platform: CUDA:

     pip install -r requirements.txt -f https://download.pytorch.org/whl/cu111/torch_stable.html
    

    OS: Linux; Compute Platform: CPU:

     pip install -r requirements_linux_cpu.txt -f https://download.pytorch.org/whl/cpu/torch_stable.html
    

    OS: Mac OR Windows; Compute Platform: CPU:

     pip install -r requirements_cpu.txt
    
  5. (CUDA) Run test to make sure the dependency installation is correct:

     python test_cuda.py
    

    (CPU) Run test to make sure the dependency installation is correct:

     python test_cpu.py
    
  6. Check the example folder in the source code or example section on the documentation website to get started.

Dependencies

Python-3.9.7

numpy-1.20.3

scipy-1.7.1

pytorch-1.9.0

osqp-0.6.2

Jupyter Notebook-6.4.5

Change Logs

Please check CHANGELOG.md in the main folder.

Notes on Documentation

PyGRANSO is a PyTorch-enabled port of GRANSO with auto-differentiation, and some of its documentation uses MATLAB conventions. In the PyGRANSO source code docstrings, please note that:

  • struct refers to pygransoStruct, which is a simple class that users need to use for specifying their problems and options.
  • Vector and matrix refer to PyTorch tensor with (n,1) and (m,n) dimension, respectively.

Acknowledgements

We would like to thank Frank E. Curtis and Michael L. Overton for their involvement in creating the BFGS-SQP algorithm that is implemented in the software package GRANSO. This work was supported by UMII Seed Grant Program and NSF CMMI 2038403.

Citation

If you publish work that uses or refers to PyGRANSO, please cite the following two papers, which respectively introduced PyGRANSO and GRANSO:

[1] Buyun Liang, Tim Mitchell, and Ju Sun, NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning, arXiv preprint arXiv:2111.13984 (2021). Available at https://arxiv.org/abs/2111.13984

[2] Frank E. Curtis, Tim Mitchell, and Michael L. Overton, A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles, Optimization Methods and Software, 32(1):148-181, 2017. Available at https://dx.doi.org/10.1080/10556788.2016.1208749

BibTex:

@article{liang2021ncvx,
    title={{NCVX}: {A} User-Friendly and Scalable Package for Nonconvex 
    Optimization in Machine Learning}, 
    author={Buyun Liang, Tim Mitchell, and Ju Sun},
    year={2021},
    eprint={2111.13984},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

@article{curtis2017bfgssqp,
    title={A {BFGS-SQP} method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles},
    author={Frank E. Curtis, Tim Mitchell, and Michael L. Overton},
    journal={Optimization Methods and Software},
    volume={32},
    number={1},
    pages={148--181},
    year={2017},
    publisher={Taylor \& Francis}
}

Contact

For questions or bug reports, please either:

  • raise issues in the PyGRANSO repository (https://github.com/sun-umn/PyGRANSO/) or
  • send an email to:
    • Buyun Liang (liang664 an_at_symbol umn a_dot_symbol edu)
    • Tim Mitchell (tim an_at_symbol timmitchell a_dot_symbol com)
    • Ju Sun (jusun an_at_symbol umn a_dot_symbol edu)

Thanks to other contributors and bug reporters:

Chen Jiang: Tested perceptual attack example (ex6). Tested PyGRANSO on Win10. Debug updatePenaltyParameter function.

Comments
  • Eigenvalue opt example

    Eigenvalue opt example

    Need to change:

    • [x] \lambda to \Lambda (lowercase to uppercase) (Typically, \Lambda uppercase denotes the spectrum, while \lambda lowercase denotes an eigenvalue.)
    • [x] "$\lambda(\cdot)$ is the eigenvalue of $\cdot$," to "$\Lambda(\cdot)$ is the spectrum of a square matrix,"
    • [x] "$\alpha$ is the maximum real part of eigenvalues of $M$." to "$\alpha(\cdot)$ is the spectral abscissa of a square matrix, i.e., the maximum real part of its eigenvalues."
    • [x] For imaginary part, \Im, in papers, I generally redefine this from the standard symbol to just "Im", e.g., "Im(A+BXC)", as I think this is usually much clearer. But this is a debatable suggestion.
    opened by t-mitchell 13
  • Posting announcement for PyGRANSO

    Posting announcement for PyGRANSO

    Machine Learning News: https://groups.google.com/g/ml-news

    SIAM: https://www.siam.org/membership/activity-groups/detail/computational-science-and-engineering https://www.siam.org/membership/activity-groups/detail/data-science https://www.siam.org/membership/activity-groups/detail/imaging-science https://www.siam.org/membership/activity-groups/detail/optimization

    opened by Buyun-Liang 11
  • Discussion: code and algorithms

    Discussion: code and algorithms

    General things:

    • [x] #13
    • [x] #20
    • [x] What is the deal with X_struct and the separation of variables as opposed to just an input vector?
    • [x] #14

    Gradient stuff:

    • [x] Does the AD enabling have to happen in comb_fn that the user provides?
    • [x] #15
    • [x] Is adding support for the user to choose between explicit and AD gradients useful? Might be a bit of work to support this though!

    Line search stuff

    • [x] What is the deal with disabling code 6 termination and how is the BFGS update then ensured to not lose positive definiteness?
    • [x] What is the deal with the backtracking line search? Same issue with positive definiteness and this may not work well for nonsmooth problems. The GRANSO line search is a key component of the BFGS-SQP algorithm.
    • [x] #16
    Code TODO 
    opened by t-mitchell 8
  • update license and copyright

    update license and copyright

    I went through the private folder and saw that we have four different types of files to update. I did some sample updates so you (a) can review to see if you agree and like my changes and (b) have templates to work from. The types are:

    1. direct port from GRANSO (see bfgsDamping.py)
    2. direct port from URTM / GRANSO (see isAnInteger.py)
    3. port from GRANSO with changes (see linesearchWeakWolfe.py)
    4. entirely new file and code (see getCiGradVec.py)

    Note that I added a GPL header block linesearchWeakWolfe.py (and bfgsHessianInverse.py) as these individual routines were derived from HANSO which is GPL. But don't add this headers to any other files.

    Overall, I tried to make things as compact as possible and only use one AGPL license block. I also eliminated some lines I thought were unnecessary or would be annoying to continually update for future releases. For example, maintaining version numbers in every file is tedious work, so I only put version numbers in the main user-facing routines, i.e., granso, gransoOptions, and gransoOptionsAdvanced.

    p.s. Let me know what you think and if you have suggestions! I definitely went back and forth on how to clearly do all of this.

    opened by t-mitchell 6
  • authors file

    authors file

    Regarding AUTHORS.md:

    1. Do you think we need or want such a detailed file? I was thinking we just I wrote GRANSO and you ported it to Python and added PyTorch support and more example.
    2. I wasn't sure how you determined the file groups, as they look different from what I see marked as direct port or not in the private folder.
    opened by t-mitchell 4
  • docstring indentation

    docstring indentation

    Probably we should remove a level of indentation in the docstring for each file, since as is, we have double the normal amount of indentation. Obviously, this is a super minor point and not critical.

    opened by t-mitchell 4
  • Regarding dummy class in `pygransoStruct.py`

    Regarding dummy class in `pygransoStruct.py`

    I'm going to replace in the dummy class with dict for the v1.0.0 release.

    How should I define the dict for the opts so that the values in dict can have different data type?

    Code TODO 
    opened by Buyun-Liang 3
  • "Please see the notes for the data structures used in PyGRANSO"?

    What does "Please see the notes for the data structures used in PyGRANSO" refer to? Is it another document somewhere? Or is this self-referential, i.e., referring to the "Notes on Documentation" section in the readme that this phrase appears in?

    question 
    opened by t-mitchell 2
  • Examples Updated

    Examples Updated

    I just updated all examples in the ./example folder. Maybe we can find a time to carefully review the README.md tomorrow

    Please let me know if there is any other thing to be updated in the source code before the initial public release.

    opened by Buyun-Liang 2
  • TODO in JMLR manuscript

    TODO in JMLR manuscript

    1. "zero dependency on proprietary packages": we should discuss this since GRANSO doesn't really have this because it could be run using OCTAVE
    2. Role of the NCVX name in the PyGRANSO package. NCVX and PyGRANSO in the JMLR paper
    Paper TODO 
    opened by Buyun-Liang 2
  • Discussion: naming and titles

    Discussion: naming and titles

    • [x] #9

    • [x] #10 optimization in machine learning" be for NCVX or PyGRANSO?

    • [x] Relatedly, is the title of the paper going to change?

    • [x] #12

    Depending on the answers to these questions, we'll need to change the docstrings in all the files.

    opened by t-mitchell 2
  • Minor bug in qpTerminationCondition.py#L226

    Minor bug in qpTerminationCondition.py#L226

    https://github.com/sun-umn/PyGRANSO/blob/main/pygranso/private/qpTerminationCondition.py#L226

    Use Hreg = torch.tensor(V) @ torch.diag(dvec) @ torch.tensor(V).T instead

    opened by Buyun-Liang 0
  • TODO in future release

    TODO in future release

    1. For avoiding unnecessary AD gradients, the GRANSO line search could be modified so that the AD gradient is only computed on demand, i.e., only compute the gradient when sufficient decrease holds

    2. Adding the MPI parallel full BFGS Python code Tim has

    Future Release 
    opened by Buyun-Liang 2
Releases(v1.2.0)
  • v1.2.0(Jul 27, 2022)

    Version: 1.2.0 --- 2022-07-26

    Description: major fixes and improvements on LBFGS.

    Fixed

    • Reducing memory usage for LBFGS. Now PyGRANSO can solve problem with ~15k parameters by using 14 GB memory.
    • Update example: ortho RNN with max folding and orthonormal initialization.
    • Allow high precision for QP solver.
    • Allow part of optimization variables not showing up in objective (see SVM example).
    • Fixed Code 12: terminated with steering failure.
    • Fixed stationary failure: try different stationarity calculation, or set stationarity measure to be inf if encounter numerical issue

    Added

    • Reorganize and add examples: perceptual/lp norm attack on ImageNet images. trace optimization with orthogonal constraints; unconstrained deep learning with LeNet5; logistic regression.
    Source code(tar.gz)
    Source code(zip)
  • v1.1.0(Feb 20, 2022)

    Version: 1.1.0 --- 2022-02-20

    Description: major fixes and improvements.

    Fixed

    • Avoid gradient accumulating in deep learning problem;
    • Prevent memory leak problem when using torch tensor. See ex6 perceptual attack.

    Changed

    • Update format of user-defined variables when using pygranso interface.

    Packaging

    • Publish pygranso package on Pypi.

    Added

    • Add examples: ex 10 dictionary learning with torch.nn module; ex 11 orthogonal recurrent neural networks.
    Source code(tar.gz)
    Source code(zip)
  • v1.0.0(Dec 31, 2021)

    Description: initial public release of PyGRANSO.

    Main features: auto-differentiation, GPU acceleration, tensor input, scalable QP solver, and zero dependency on proprietary packages. Multiple new examples added.

    Source code(tar.gz)
    Source code(zip)
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023