Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Overview

Compressive Visual Representations

This repository contains the source code for our paper, Compressive Visual Representations. We developed information-compressed versions of the SimCLR and BYOL self-supervised learning algorithms, which we call C-SimCLR and C-BYOL, using the Conditional Entropy Bottleneck, and achieved significant improvements in accuracy and robustness, yielding linear evaluation performance competitive with fully supervised models.

cvr_perf

We include implementations of the C-SimCLR and C-BYOL algorithms developed in our paper, as well as SimCLR and BYOL baselines.

Getting Started

Install the necessary dependencies with pip install -r requirements.txt. We recommend creating a new virtual environment.

To train a model with C-SimCLR on ImageNet run bash scripts/csimclr.sh. And to train a model with C-BYOL, run bash scripts/cbyol.sh.

Refer to the scripts for further configuration options, and also to train the corresponding SimCLR and BYOL baselines.

These command lines use the hyperparameters used to train the models in our paper. In particular, we used a batch size of 4096 using 32 Cloud TPUs. Using different accelerators will require reducing the batch size. To get started with Google Cloud TPUs, we recommend following this tutorial.

Checkpoints

The following table contains pretrained checkpoints for C-SimCLR, C-BYOL and also their respective baselines, SimCLR and BYOL. All models are trained on ImageNet. The Top-1 accuracy is obtained by training a linear classifier on top of a ``frozen'' backbone whilst performing self-supervised training of the network.

Algorithm Backbone Training epochs ImageNet Top-1 Checkpoint
SimCLR ResNet 50 1000 71.1 link
SimCLR ResNet 50 2x 1000 74.6 link
C-SimCLR ResNet 50 1000 71.8 link
C-SimCLR ResNet 50 2x 1000 74.7 link
BYOL ResNet 50 1000 74.4 link
BYOL ResNet 50 2x 1000 77.3 link
C-BYOL ResNet 50 1000 75.9 link
C-BYOL ResNet 50 2x 1000 79.1 link
C-BYOL ResNet 101 1000 78.0 link
C-BYOL ResNet 152 1000 78.8 link
C-BYOL ResNet 50 1500 76.0 link

Reference

If you use C-SimCLR or C-BYOL, please use the following BibTeX entry.

@InProceedings{lee2021compressive,
  title={Compressive Visual Representations},
  author={Lee, Kuang-Huei and Arnab, Anurag and Guadarrama, Sergio and Canny, John and Fischer, Ian},
  booktitle={NeurIPS},
  year={2021}
}

Credits

This repository is based on SimCLR. We also match our BYOL implementation in Tensorflow 2 to the original implementation of BYOL in JAX.

Disclaimer: This is not an official Google product.

Owner
Google Research
Google Research
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 13.4k Jan 08, 2023
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023