Improving Machine Translation Systems via Isotopic Replacement

Related tags

Deep LearningCAT
Overview

CAT (Improving Machine Translation Systems via Isotopic Replacement)

Machine translation plays an essential role in people’s daily international communication. However, machine translation systems are far from perfect. To tackle this problem, researchers have proposed several approaches to testing machine translation. A promising trend among these approaches is to use word replacement, where only one word in the original sentence is replaced with another word to form a sentence pair. However, precise control of the impact of word replacement remains an outstanding issue in these approaches.

To address this issue, we propose CAT, a novel word-replacement-based approach, whose basic idea is to identify word replacement with controlled impact (referred to as isotopic replacement). To achieve this purpose, we use a neural-based language model to encode the sentence context, and design a neural-network-based algorithm to evaluate context-aware semantic similarity between two words. Furthermore, similar to TransRepair, a state-of-the-art word-replacement-based approach, CAT also provides automatic fixing of revealed bugs without model retraining.

Our evaluation on Google Translate and Transformer indicates that CAT achieves significant improvements over TransRepair. In particular, 1) CAT detects seven more types of bugs than TransRepair; 2) CAT detects 129% more translation bugs than TransRepair; 3) CAT repairs twice more bugs than TransRepair, many of which may bring serious consequences if left unfixed; and 4) CAT has better efficiency than TransRepair in input generation (0.01s v.s. 0.41s) and comparable efficiency with TransRepair in bug repair (1.92s v.s. 1.34s).

The main file tree of CAT

.
├── Labeled data
│   ├── RQ1 Test Input Generation
│   ├── RQ2 Bug Detection
│   ├── RQ3 Bug Repair
│   └── Extended Analysis
├── TS
├── MutantGen-Test.py
├── MutantGen-Repair.py
├── Repair.py
├── Testing.py
├── NewThres
│   ├── TestGenerator-NMT
│   └── TestGenerator-NMTRep
└── NMT_zh_en0-8Mu
    ├── padTrans
    └── repair-new

The manual assessment results are in the Labeled data folder.

For Testing:

python3 Testing.py

After it, the results are in the NMT_zh_en0-8Mu/padTrans folder.

For Repair:

python3 Repair.py

After it, the results are in the TS/quickstart0/repair-NEW folder.

Data

The LookUpTable.txt used in NMT_zh_en_0-8Mu/padTrans and NMT_zh_en_0-8Mu/repair-new is available at https://drive.google.com/file/d/1fjGpryzGohla0ZA4u7KDgRJeAHegy0A1/view?usp=sharing

Dependenices

NLTK 3.2.1
Pytorch 1.6.1
Python 3.7
Ubuntu 16.04
Transformers 3.3.0
Owner
Zeyu Sun
A Ph.D. student.
Zeyu Sun
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023