Improving Machine Translation Systems via Isotopic Replacement

Related tags

Deep LearningCAT
Overview

CAT (Improving Machine Translation Systems via Isotopic Replacement)

Machine translation plays an essential role in people’s daily international communication. However, machine translation systems are far from perfect. To tackle this problem, researchers have proposed several approaches to testing machine translation. A promising trend among these approaches is to use word replacement, where only one word in the original sentence is replaced with another word to form a sentence pair. However, precise control of the impact of word replacement remains an outstanding issue in these approaches.

To address this issue, we propose CAT, a novel word-replacement-based approach, whose basic idea is to identify word replacement with controlled impact (referred to as isotopic replacement). To achieve this purpose, we use a neural-based language model to encode the sentence context, and design a neural-network-based algorithm to evaluate context-aware semantic similarity between two words. Furthermore, similar to TransRepair, a state-of-the-art word-replacement-based approach, CAT also provides automatic fixing of revealed bugs without model retraining.

Our evaluation on Google Translate and Transformer indicates that CAT achieves significant improvements over TransRepair. In particular, 1) CAT detects seven more types of bugs than TransRepair; 2) CAT detects 129% more translation bugs than TransRepair; 3) CAT repairs twice more bugs than TransRepair, many of which may bring serious consequences if left unfixed; and 4) CAT has better efficiency than TransRepair in input generation (0.01s v.s. 0.41s) and comparable efficiency with TransRepair in bug repair (1.92s v.s. 1.34s).

The main file tree of CAT

.
├── Labeled data
│   ├── RQ1 Test Input Generation
│   ├── RQ2 Bug Detection
│   ├── RQ3 Bug Repair
│   └── Extended Analysis
├── TS
├── MutantGen-Test.py
├── MutantGen-Repair.py
├── Repair.py
├── Testing.py
├── NewThres
│   ├── TestGenerator-NMT
│   └── TestGenerator-NMTRep
└── NMT_zh_en0-8Mu
    ├── padTrans
    └── repair-new

The manual assessment results are in the Labeled data folder.

For Testing:

python3 Testing.py

After it, the results are in the NMT_zh_en0-8Mu/padTrans folder.

For Repair:

python3 Repair.py

After it, the results are in the TS/quickstart0/repair-NEW folder.

Data

The LookUpTable.txt used in NMT_zh_en_0-8Mu/padTrans and NMT_zh_en_0-8Mu/repair-new is available at https://drive.google.com/file/d/1fjGpryzGohla0ZA4u7KDgRJeAHegy0A1/view?usp=sharing

Dependenices

NLTK 3.2.1
Pytorch 1.6.1
Python 3.7
Ubuntu 16.04
Transformers 3.3.0
Owner
Zeyu Sun
A Ph.D. student.
Zeyu Sun
This repository contains the scripts for downloading and validating scripts for the documents

HC4: HLTCOE CLIR Common-Crawl Collection This repository contains the scripts for downloading and validating scripts for the documents. Document ids,

JHU Human Language Technology Center of Excellence 6 Jun 07, 2022
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023