Improving Machine Translation Systems via Isotopic Replacement

Related tags

Deep LearningCAT
Overview

CAT (Improving Machine Translation Systems via Isotopic Replacement)

Machine translation plays an essential role in people’s daily international communication. However, machine translation systems are far from perfect. To tackle this problem, researchers have proposed several approaches to testing machine translation. A promising trend among these approaches is to use word replacement, where only one word in the original sentence is replaced with another word to form a sentence pair. However, precise control of the impact of word replacement remains an outstanding issue in these approaches.

To address this issue, we propose CAT, a novel word-replacement-based approach, whose basic idea is to identify word replacement with controlled impact (referred to as isotopic replacement). To achieve this purpose, we use a neural-based language model to encode the sentence context, and design a neural-network-based algorithm to evaluate context-aware semantic similarity between two words. Furthermore, similar to TransRepair, a state-of-the-art word-replacement-based approach, CAT also provides automatic fixing of revealed bugs without model retraining.

Our evaluation on Google Translate and Transformer indicates that CAT achieves significant improvements over TransRepair. In particular, 1) CAT detects seven more types of bugs than TransRepair; 2) CAT detects 129% more translation bugs than TransRepair; 3) CAT repairs twice more bugs than TransRepair, many of which may bring serious consequences if left unfixed; and 4) CAT has better efficiency than TransRepair in input generation (0.01s v.s. 0.41s) and comparable efficiency with TransRepair in bug repair (1.92s v.s. 1.34s).

The main file tree of CAT

.
├── Labeled data
│   ├── RQ1 Test Input Generation
│   ├── RQ2 Bug Detection
│   ├── RQ3 Bug Repair
│   └── Extended Analysis
├── TS
├── MutantGen-Test.py
├── MutantGen-Repair.py
├── Repair.py
├── Testing.py
├── NewThres
│   ├── TestGenerator-NMT
│   └── TestGenerator-NMTRep
└── NMT_zh_en0-8Mu
    ├── padTrans
    └── repair-new

The manual assessment results are in the Labeled data folder.

For Testing:

python3 Testing.py

After it, the results are in the NMT_zh_en0-8Mu/padTrans folder.

For Repair:

python3 Repair.py

After it, the results are in the TS/quickstart0/repair-NEW folder.

Data

The LookUpTable.txt used in NMT_zh_en_0-8Mu/padTrans and NMT_zh_en_0-8Mu/repair-new is available at https://drive.google.com/file/d/1fjGpryzGohla0ZA4u7KDgRJeAHegy0A1/view?usp=sharing

Dependenices

NLTK 3.2.1
Pytorch 1.6.1
Python 3.7
Ubuntu 16.04
Transformers 3.3.0
Owner
Zeyu Sun
A Ph.D. student.
Zeyu Sun
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022