Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Related tags

Deep Learningvis2mesh
Overview

Vis2Mesh

This is the offical repository of the paper:

Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility

https://arxiv.org/abs/2108.08378

@misc{song2021vis2mesh,
      title={Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility}, 
      author={Shuang Song and Zhaopeng Cui and Rongjun Qin},
      year={2021},
      eprint={2108.08378},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Updates
  • 2021/9/6: Intialize all in one project. Only this version only supports inferencing with our pre-trained weights. We will release Dockerfile to relief deploy efforts.
TODO
  • Ground truth generation and network training.
  • Evaluation scripts

Build With Docker (Recommended)

Install nvidia-docker2
# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
Build docker image

docker build . -t vis2mesh

Build on Ubuntu

Please create a conda environment with pytorch and check out our setup script:

./setup_tools.sh

Usage

Get pretrained weights and examples
pip install gdown
./checkpoints/get_pretrained.sh
./example/get_example.sh
Run example

The main command for surface reconstruction, the result will be copied as $(CLOUDFILE)_vis2mesh.ply.

python inference.py example/example1.ply --cam cam0

We suggested to use docker, either in interactive mode or single shot mode.

xhost +
name=vis2mesh
# Run in interactive mode
docker run -it \
--mount type=bind,source="$PWD/checkpoints",target=/workspace/checkpoints \
--mount type=bind,source="$PWD/example",target=/workspace/example \
--privileged \
--net=host \
-e NVIDIA_DRIVER_CAPABILITIES=all \
-e DISPLAY=unix$DISPLAY \
-v $XAUTH:/root/.Xauthority \
-v /tmp/.X11-unix:/tmp/.X11-unix:rw \
--device=/dev/dri \
--gpus all $name

cd /workspace
python inference.py example/example1.ply --cam cam0

# Run with single shot call
docker run \
--mount type=bind,source="$PWD/checkpoints",target=/workspace/checkpoints \
--mount type=bind,source="$PWD/example",target=/workspace/example \
--privileged \
--net=host \
-e NVIDIA_DRIVER_CAPABILITIES=all \
-e DISPLAY=unix$DISPLAY \
-v $XAUTH:/root/.Xauthority \
-v /tmp/.X11-unix:/tmp/.X11-unix:rw \
--device=/dev/dri \
--gpus all $name \
/workspace/inference.py example/example1.ply --cam cam0
Run with Customize Views

python inference.py example/example1.ply Run the command without --cam flag, you can add virtual views interactively with the following GUI. Your views will be recorded in example/example1.ply_WORK/cam*.json.

Main View

Navigate in 3D viewer and click key [Space] to record current view. Click key [Q] to close the window and continue meshing process.

Record Virtual Views

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct

TensorLayer Community 159 Nov 22, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022