A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

Overview

AnimeGAN

A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

Randomly Generated Images

The images are generated from a DCGAN model trained on 143,000 anime character faces for 100 epochs.

fake_sample_1

Image Interpolation

Manipulating latent codes, enables the transition from images in the first row to the last row.

transition

Original Images

The images are not clean, some outliers can be observed, which degrades the quality of the generated images.

real_sample

Usage

To run the experiment,

$ python main.py --dataRoot path_to_dataset/ 

The pretrained model for DCGAN are also in this repo, play it inside the jupyter notebook.

anime-faces Dataset

Anime-style images of 126 tags are collected from danbooru.donmai.us using the crawler tool gallery-dl. The images are then processed by a anime face detector python-animeface. The resulting dataset contains ~143,000 anime faces. Note that some of the tags may no longer meaningful after cropping, i.e. the cropped face images under 'uniform' tag may not contain visible parts of uniforms.

How to construct the dataset from scratch ?

Prequisites: gallery-dl, python-animeface

  1. Download anime-style images

    # download 1000 images under the tag "misaka_mikoto"
    gallery-dl --images 1000 "https://danbooru.donmai.us/posts?tags=misaka_mikoto"
    
    # in a multi-processing manner
    cat tags.txt | \
    xargs -n 1 -P 12 -I 'tag' \ 
    bash -c ' gallery-dl --images 1000 "https://danbooru.donmai.us/posts?tags=$tag" '
  2. Extract faces from the downloaded images

    import animeface
    from PIL import Image
    
    im = Image.open('images/anime_image_misaka_mikoto.png')
    faces = animeface.detect(im)
    x,y,w,h = faces[0].face.pos
    im = im.crop((x,y,x+w,y+h))
    im.show() # display

I've cleaned the original dataset, the new version of the dataset has 115085 images in 126 tags. You can access the images from:

Non-commercial use please.

Things I've learned

  1. GANs are really hard to train.
  2. DCGAN generally works well, simply add fully-connected layers causes problems.
  3. In my cases, more layers for G yields better images, in the sense that G should be more powerful than D.
  4. Add noise to D's inputs and labels helps stablize training.
  5. Use differnet input and generate resolution (64x64 vs 96x96), there seems no obvious difference during training, the generated images are also very similar.
  6. Binray Noise as G's input amazingly works, but the images are not as good as those with Gussian Noise, idea credit to @cwhy ['Binary Noise' here I mean a sequence of {-1,1} generated by bernoulli distribution at p=0.5 ]

I did not carefully verify them, if you are looking for some general GAN tips, see @soumith's ganhacks

Others

  1. This project is heavily influenced by chainer-DCGAN and IllustrationGAN, the codes are mostly borrowed from PyTorch DCGAN example, thanks the authors for the clean codes.
  2. Dependencies: pytorch, torchvision
  3. This is a toy project for me to learn PyTorch and GANs, most importantly, for fun! :) Any feedback is welcome.

@jayleicn

Comments
  • KeyError: 'module name can\'t contain

    KeyError: 'module name can\'t contain "."'

    The classes in module.py contains some nn.Module layers whose names contains some'.' in it, so I got error messages like the title, so how could I play it??

    opened by bolin12 2
  • no image under some tags

    no image under some tags

    Hi, The dataset from google drive contains 126 tags. However, some folders are emtpy:

    1girl apron blush collarbone hairclip honma_meiko japanese_clothes monochrome necktie nishizumi_miho purple_eyes scarf school_uniform sunglasses

    Is this normal? Thanks

    opened by samrere 1
  • set_sizes_contiguous is not allowed on a Tensor created from .data or .detach().

    set_sizes_contiguous is not allowed on a Tensor created from .data or .detach().

    input.data.resize_(real_cpu.size()).copy_(real_cpu) RuntimeError: set_sizes_contiguous is not allowed on a Tensor created from .data or .detach(). If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset) without autograd tracking the change, remove the .data / .detach() call and wrap the change in a with torch.no_grad(): block. For example, change: x.data.set_(y) to: with torch.no_grad(): x.set_(y)

    opened by athulvingt 0
  • can not run

    can not run

    Traceback (most recent call last): File "main.py", line 6, in import torch File "/Library/Python/2.7/site-packages/torch/init.py", line 81, in from torch._C import * RuntimeError: module compiled against API version 0xa but this version of numpy is 0x9

    opened by xtzero 0
  • How do I start with my own model

    How do I start with my own model

    I would like to know how I can use this image generation to generate my own images from a self made model?

    Where can I read upon on this. I find no concrete info on making the models.

    opened by quintendewilde 0
Owner
Jie Lei 雷杰
UNC CS PhD student, vision+language.
Jie Lei 雷杰
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
pip install python-office

🍬 python for office 👉 http://www.python4office.cn/ 👈 🌎 English Documentation 📚 简介 Python-office 是一个 Python 自动化办公第三方库,能解决大部分自动化办公的问题。而且每个功能只需一行代码,

程序员晚枫 272 Dec 29, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023