A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

Overview

AnimeGAN

A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

Randomly Generated Images

The images are generated from a DCGAN model trained on 143,000 anime character faces for 100 epochs.

fake_sample_1

Image Interpolation

Manipulating latent codes, enables the transition from images in the first row to the last row.

transition

Original Images

The images are not clean, some outliers can be observed, which degrades the quality of the generated images.

real_sample

Usage

To run the experiment,

$ python main.py --dataRoot path_to_dataset/ 

The pretrained model for DCGAN are also in this repo, play it inside the jupyter notebook.

anime-faces Dataset

Anime-style images of 126 tags are collected from danbooru.donmai.us using the crawler tool gallery-dl. The images are then processed by a anime face detector python-animeface. The resulting dataset contains ~143,000 anime faces. Note that some of the tags may no longer meaningful after cropping, i.e. the cropped face images under 'uniform' tag may not contain visible parts of uniforms.

How to construct the dataset from scratch ?

Prequisites: gallery-dl, python-animeface

  1. Download anime-style images

    # download 1000 images under the tag "misaka_mikoto"
    gallery-dl --images 1000 "https://danbooru.donmai.us/posts?tags=misaka_mikoto"
    
    # in a multi-processing manner
    cat tags.txt | \
    xargs -n 1 -P 12 -I 'tag' \ 
    bash -c ' gallery-dl --images 1000 "https://danbooru.donmai.us/posts?tags=$tag" '
  2. Extract faces from the downloaded images

    import animeface
    from PIL import Image
    
    im = Image.open('images/anime_image_misaka_mikoto.png')
    faces = animeface.detect(im)
    x,y,w,h = faces[0].face.pos
    im = im.crop((x,y,x+w,y+h))
    im.show() # display

I've cleaned the original dataset, the new version of the dataset has 115085 images in 126 tags. You can access the images from:

Non-commercial use please.

Things I've learned

  1. GANs are really hard to train.
  2. DCGAN generally works well, simply add fully-connected layers causes problems.
  3. In my cases, more layers for G yields better images, in the sense that G should be more powerful than D.
  4. Add noise to D's inputs and labels helps stablize training.
  5. Use differnet input and generate resolution (64x64 vs 96x96), there seems no obvious difference during training, the generated images are also very similar.
  6. Binray Noise as G's input amazingly works, but the images are not as good as those with Gussian Noise, idea credit to @cwhy ['Binary Noise' here I mean a sequence of {-1,1} generated by bernoulli distribution at p=0.5 ]

I did not carefully verify them, if you are looking for some general GAN tips, see @soumith's ganhacks

Others

  1. This project is heavily influenced by chainer-DCGAN and IllustrationGAN, the codes are mostly borrowed from PyTorch DCGAN example, thanks the authors for the clean codes.
  2. Dependencies: pytorch, torchvision
  3. This is a toy project for me to learn PyTorch and GANs, most importantly, for fun! :) Any feedback is welcome.

@jayleicn

Comments
  • KeyError: 'module name can\'t contain

    KeyError: 'module name can\'t contain "."'

    The classes in module.py contains some nn.Module layers whose names contains some'.' in it, so I got error messages like the title, so how could I play it??

    opened by bolin12 2
  • no image under some tags

    no image under some tags

    Hi, The dataset from google drive contains 126 tags. However, some folders are emtpy:

    1girl apron blush collarbone hairclip honma_meiko japanese_clothes monochrome necktie nishizumi_miho purple_eyes scarf school_uniform sunglasses

    Is this normal? Thanks

    opened by samrere 1
  • set_sizes_contiguous is not allowed on a Tensor created from .data or .detach().

    set_sizes_contiguous is not allowed on a Tensor created from .data or .detach().

    input.data.resize_(real_cpu.size()).copy_(real_cpu) RuntimeError: set_sizes_contiguous is not allowed on a Tensor created from .data or .detach(). If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset) without autograd tracking the change, remove the .data / .detach() call and wrap the change in a with torch.no_grad(): block. For example, change: x.data.set_(y) to: with torch.no_grad(): x.set_(y)

    opened by athulvingt 0
  • can not run

    can not run

    Traceback (most recent call last): File "main.py", line 6, in import torch File "/Library/Python/2.7/site-packages/torch/init.py", line 81, in from torch._C import * RuntimeError: module compiled against API version 0xa but this version of numpy is 0x9

    opened by xtzero 0
  • How do I start with my own model

    How do I start with my own model

    I would like to know how I can use this image generation to generate my own images from a self made model?

    Where can I read upon on this. I find no concrete info on making the models.

    opened by quintendewilde 0
Owner
Jie Lei 雷杰
UNC CS PhD student, vision+language.
Jie Lei 雷杰
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021