Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

Overview

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex

Introduction

As a popular entertainment art form, manga enriches the line drawings details with bitonal screentones. However, manga resources over the Internet usually show screentone artifacts because of inappropriate scanning/rescaling resolution. In this paper, we propose an innovative two-stage method to restore quality bitonal manga from degraded ones. Our key observation is that the aliasing induced by downsampling bitonal screentones can be utilized as informative clues to infer the original resolution and screentones. First, we predict the target resolution from the degraded manga via the Scale Estimation Network (SE-Net) with spatial voting scheme. Then, at the target resolution, we restore the region-wise bitonal screentones via the Manga Restoration Network (MR-Net) discriminatively, depending on the degradation degree. Specifically, the original screentones are directly restored in pattern-identifiable regions, and visually plausible screentones are synthesized in pattern-agnostic regions. Quantitative evaluation on synthetic data and visual assessment on real-world cases illustrate the effectiveness of our method.

Example Results

Belows shows an example of our restored manga image. The image comes from the Manga109 dataset.

Degraded Restored

Pretrained models

Download the models below and put it under release_model/.

MangaRestoration

Run

  1. Requirements:
    • Install python3.6
    • Install pytorch (tested on Release 1.1.0)
  2. Testing:
    • Place your test images under datazip/manga1/test.
    • Prepare images filelist using flist.py.
    • Modify manga.json to set path to data.
    • Run python testreal.py -c [config_file] -n [model_name] -s [image_size] .
    • For example, python testreal.py -c configs/manga.json -n resattencv -s 256
    • You can also use python testreal.py -c [config_file] -n [model_name] -s [image_size] -sl [scale] to specify the scale factor.
    • Note that the Convex interpolation refinement requires large GPU memory, you can enable it by setting (bilinear=False) in MangaRestorator to restore images. Defaultly, we set bilinear=True.

Citation

If any part of our paper and code is helpful to your work, please generously cite with:

@inproceedings{xie2021exploiting,
  author = {Minshan Xie and Menghan Xia and Tien-Tsin Wong},
  title = {Exploiting Aliasing for Manga Restoration},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2021}
}

Reference

Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
a reimplementation of Holistically-Nested Edge Detection in PyTorch

pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please

Simon Niklaus 375 Dec 06, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022