Help you understand Manual and w/ Clutch point while driving.

Overview

简体中文

forza_auto_gear

forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in Forza Horizon 5. Built with python.

Quick View

A800, GTR93, drag strip

  • Automatic (00:27.665): automatic
  • Manual (00:27.166): manual
  • Manual with Clutch (00:26.441): manual w/ clutch
  • Program, Manual with Clutch (00:26.265): program manual w/ clutch

Prerequisites

Install >= Python 3.8

Installation

pip3 install -r requirements.txt
git submodule init
git submodule update --recursive

Usage

  1. Setup the data out: data_output_settings
  2. Run main.py
  3. F10 starts the data collection:
    • Find a drag strip location.
    • Starting from Gear 1, accelerate until fuel cut-off (rpm is vibrating), then up shifting gear. Repeat until reaching the maximum gear.
    • Press REWIND to pause, then press F10 to stop data collect.
  4. F8 to analyze the data. It will generate the car performance figures like below: console_analysis forza_performance_analysis Then the result will be saved at ./config/{car ordinal}.json
  5. F7 to start auto gear shifting! f7 test
  6. Press F7 again to stop.

Moreover

  1. By default the shifting mode is Manual with Clutch. You could change it in constants.py.
  2. Lots of variables could be modified in constants.py
  3. If you already have the config file, then run F7 directly. It will load the config automatically while driving. Or you could share configs to your friends. Don't forget to share your car tune as well :)
  4. You could modify the log level in logger.py for console and file handlers.
  5. Feel free to modify any logic to fit your style.

Acknowledgments

You might also like...
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Implementation of the
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Code for
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Implementation of the
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Synthetic LiDAR sequential point cloud dataset with point-wise annotations
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Releases(v1.2.0)
  • v1.2.0(Jan 1, 2023)

    What's Changed

    • update action node js version by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/52
    • update action version by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/53
    • reduce line of log to 200 by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/54

    Full Changelog: https://github.com/Juice-XIJ/forza_auto_gear/compare/v1.1.9...v1.2.0

    Source code(tar.gz)
    Source code(zip)
    Forza_Auto_Gear_GUI.zip(35.25 MB)
  • v1.1.9(Dec 23, 2022)

  • v1.1.8(Jun 29, 2022)

    What's Changed

    • no break if car is recorded by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/49
    • brake while needed by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/50

    Full Changelog: https://github.com/Juice-XIJ/forza_auto_gear/compare/v1.1.7...v1.1.8

    Source code(tar.gz)
    Source code(zip)
    Forza_Auto_Gear_GUI.zip(35.37 MB)
  • v1.1.8-alpha(Jun 29, 2022)

    What's Changed

    • no break if car is recorded by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/49
    • brake while needed by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/50

    Full Changelog: https://github.com/Juice-XIJ/forza_auto_gear/compare/v1.1.7...v1.1.8-alpha

    Source code(tar.gz)
    Source code(zip)
    Forza_Auto_Gear_GUI.zip(35.37 MB)
  • v1.1.7(Jun 15, 2022)

  • v1.1.6(Jun 8, 2022)

    What's Changed

    • tcs yyds by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/45
    • fix orpm calculation by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/46
    • interval between x and enter by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/47

    Full Changelog: https://github.com/Juice-XIJ/forza_auto_gear/compare/V1.1.6...v1.1.6

    Source code(tar.gz)
    Source code(zip)
    Forza_Auto_Gear_GUI.zip(35.32 MB)
  • V1.1.6(May 21, 2022)

  • v1.1.5(May 17, 2022)

  • v1.1.4(May 10, 2022)

    What's Changed

    • update blipThrottle by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/40
    • support program settings by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/41
    • update docs by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/42

    Full Changelog: https://github.com/Juice-XIJ/forza_auto_gear/compare/v1.1.3...v1.1.4

    Source code(tar.gz)
    Source code(zip)
    Forza_Auto_Gear_GUI.zip(35.30 MB)
  • v1.1.3(Apr 28, 2022)

    What's Changed

    • fix rwd by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/33
    • rwd fix2 by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/34
    • rwd fix3 to stablize by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/35
    • update logger to hight warning and error by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/36
    • optimize ui thread by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/37
    • fix car testing by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/38
    • lower down shifting threshold on rwd by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/39

    Full Changelog: https://github.com/Juice-XIJ/forza_auto_gear/compare/v1.1.1...v1.1.3

    Source code(tar.gz)
    Source code(zip)
    Forza_Auto_Gear_GUI.zip(35.30 MB)
  • v1.1.2c(Apr 27, 2022)

  • v1.1.2b(Apr 27, 2022)

    What's Changed

    • rwd fix3 to stablize by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/35
    • update logger to hight warning and error by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/36

    Full Changelog: https://github.com/Juice-XIJ/forza_auto_gear/compare/v1.1.2a...v1.1.2b

    Source code(tar.gz)
    Source code(zip)
    Forza_Auto_Gear_GUI.zip(35.30 MB)
  • v1.1.2a(Apr 26, 2022)

  • v1.1.1(Apr 26, 2022)

  • v1.1.0(Apr 26, 2022)

    What's Changed

    • update break logic by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/28
    • Update zh-cn docs by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/29
    • refine GUI and config version by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/30
    • fix gui info lost by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/31

    Full Changelog: https://github.com/Juice-XIJ/forza_auto_gear/compare/v1.0.9...v1.1.0

    Source code(tar.gz)
    Source code(zip)
    Forza_Auto_Gear_GUI.zip(35.30 MB)
  • v1.0.9(Jan 6, 2022)

  • v1.0.8(Jan 3, 2022)

    What's Changed

    • update gear ratio explanation and figures by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/25
    • update docs by @Juice-XIJ in https://github.com/Juice-XIJ/forza_auto_gear/pull/26

    Full Changelog: https://github.com/Juice-XIJ/forza_auto_gear/compare/v1.0.7...v1.0.8

    Source code(tar.gz)
    Source code(zip)
    Forza_Auto_Gear_GUI.zip(36.11 MB)
  • v1.0.7(Jan 2, 2022)

Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022