Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Overview

Point Cloud Denoising

input segmentation output
#9F1924 raw point-cloud #9E9E9E valid/clear #7300E6 fog #009999 rain #6EA046 de-noised

Abstract

Lidar sensors are frequently used in environment perception for autonomous vehicles and mobile robotics to complement camera, radar, and ultrasonic sensors. Adverse weather conditions are significantly impacting the performance of lidar-based scene understanding by causing undesired measurement points that in turn effect missing detections and false positives. In heavy rain or dense fog, water drops could be misinterpreted as objects in front of the vehicle which brings a mobile robot to a full stop. In this paper, we present the first CNN-based approach to understand and filter out such adverse weather effects in point cloud data. Using a large data set obtained in controlled weather environments, we demonstrate a significant performance improvement of our method over state-of-the-art involving geometric filtering.

Download Dataset

Information: Click here for registration and download.

Dataset Information

  • each channel contains a matrix with 32x400 values, ordered in layers and columns
  • the coordinate system is based on the conventions for land vehicles DIN ISO 8855 (Wikipedia)
hdf5 channels info
labels_1 groundtruth labels, 0: no label, 100: valid/clear, 101: rain, 102: fog
distance_m_1 distance in meter
intensity_1 raw intensity of the sensor
sensorX_1 x-coordinates in a projected 32x400 view
sensorY_1 y-coordinates in a projected 32x400 view
sensorZ_1 z-coordinates in a projected 32x400 view
hdf5 attributes info
dateStr date of the recording yyyy-mm-dd
timeStr timestamp of the recording HH:MM:SS
meteorologicalVisibility_m ground truth meteorological visibility in meter provided by the climate chamber
rainfallRate_mmh ground truth rainfall rate in mm/h provided by the climate chamber
# example for reading the hdf5 attributes
import h5py
with h5py.File(filename, "r", driver='core') as hdf5:
  weather_data = dict(hdf5.attrs)

Getting Started

We provide documented tools for visualization in python using ROS. Therefore, you need to install ROS and the rospy client API first.

  • install rospy
apt install python-rospy  

Then start "roscore" and "rviz" in separate terminals.

Afterwards, you can use the visualization tool:

  • clone the repository:
cd ~/workspace
git clone https://github.com/rheinzler/PointCloudDeNoising.git
cd ~/workspace/PointCloudDeNoising
  • create a virtual environment:
mkdir -p ~/workspace/PointCloudDeNoising/venv
virtualenv --no-site-packages -p python3 ~/workspace/PointCloudDeNoising/venv
  • source virtual env and install dependencies:
source ~/workspace/PointCloudDeNoising/venv/bin/activate
pip install -r requirements.txt
  • start visualization:
cd src
python visu.py

Notes:

  • We used the following label mapping for a single lidar point: 0: no label, 100: valid/clear, 101: rain, 102: fog
  • Before executing the script you should change the input path

Reference

If you find our work on lidar point-cloud de-noising in adverse weather useful for your research, please consider citing our work.:

@article{PointCloudDeNoising2020, 
  author   = {Heinzler, Robin and Piewak, Florian and Schindler, Philipp and Stork, Wilhelm},
  journal  = {IEEE Robotics and Automation Letters}, 
  title    = {CNN-based Lidar Point Cloud De-Noising in Adverse Weather}, 
  year     = {2020}, 
  keywords = {Semantic Scene Understanding;Visual Learning;Computer Vision for Transportation}, 
  doi      = {10.1109/LRA.2020.2972865}, 
  ISSN     = {2377-3774}
}

Acknowledgements

This work has received funding from the European Union under the H2020 ECSEL Programme as part of the DENSE project, contract number 692449. We thank Velodyne Lidar, Inc. for permission to publish this dataset.

Feedback/Questions/Error reporting

Feedback? Questions? Any problems or errors? Please do not hesitate to contact us!

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
This is a beginner-friendly repo to make a collection of some unique and awesome projects. Everyone in the community can benefit & get inspired by the amazing projects present over here.

Awesome-Projects-Collection Quality over Quantity :) What to do? Add some unique and amazing projects as per your favourite tech stack for the communi

Rohan Sharma 178 Jan 01, 2023
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022