Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

Overview

DIGAN (ICLR 2022)

Official PyTorch implementation of "Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks" by Sihyun Yu*, Jihoon Tack*, Sangwoo Mo*, Hyunsu Kim, Junho Kim, Jung-Woo Ha, Jinwoo Shin.

TL;DR: We make video generation scalable leveraging implicit neural representations.

Illustration of the (a) generator and (b) discriminator of DIGAN. The generator creates a video INR weight from random content and motion vectors, which produces an image that corresponds to the input 2D grids {(x, y)} and time t. Two discriminators determine the reality of each image and motion (from a pair of images and their time difference), respectively.

1. Environment setup

conda create -n digan python=3.8
conda activate digan

pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html

pip install hydra-core==1.0.6
pip install tqdm scipy scikit-learn av ninja
pip install click gitpython requests psutil einops tensorboardX

2. Dataset

One should organize the video dataset as follows:

UCF-101

UCF-101
|-- train
    |-- class1
        |-- video1.avi
        |-- video2.avi
        |-- ...
    |-- class2
        |-- video1.avi
        |-- video2.avi
        |-- ...
    |-- ...

Other video datasets (Sky Time lapse, TaiChi-HD, Kinetics-food)

Video dataset
|-- train
    |-- video1
        |-- frame00000.png
        |-- frame00001.png
        |-- ...
    |-- video2
        |-- frame00000.png
        |-- frame00001.png
        |-- ...
    |-- ...
|-- val
    |-- video1
        |-- frame00000.png
        |-- frame00001.png
        |-- ...
    |-- ...

Dataset download

3. Training

To train the model, navigate to the project directory and run:

python src/infra/launch.py hydra.run.dir=. +experiment_name=<EXP_NAME> +dataset.name=<DATASET>

You may change training options via modifying configs/main.yml and configs/digan.yml.
Also the dataset list is as follows, <DATASET>: {UCF-101,sky,taichi,kinetics}

4. Evaluation (FVD and KVD)

python src/scripts/compute_fvd_kvd.py --network_pkl <MODEL_PATH> --data_path <DATA_PATH>

5. Video generation

Genrate and visualize videos (as gif and mp4):

python src/scripts/generate_videos.py --network_pkl <MODEL_PATH> --outdir <OUTPUT_PATH>

6. Results

Generated video results of DIGAN on TaiChi (top) and Sky (bottom) datasets.
More generated video results are available at the following site.

Citation

@inproceedings{
    yu2022generating,
    title={Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks},
    author={Yu, Sihyun and Tack, Jihoon and Mo, Sangwoo and Kim, Hyunsu and Kim, Junho and Ha, Jung-Woo and Shin, Jinwoo},
    booktitle={International Conference on Learning Representations},
    year={2022},
}

Reference

This code is mainly built upon StyleGAN2-ada and INR-GAN repositories.
We also used the code from following repositories: DiffAug, VideoGPT, MDGAN

Lisence

Copyright 2022-present NAVER Corp.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Owner
Sihyun Yu
Ph.D. student at ALINLAB @ KAIST
Sihyun Yu
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022