Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

Overview

IAug_CDNet

Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

Overview

We propose a novel data-level solution, namely Instance-level change Augmentation (IAug), to generate bi-temporal images that contain changes involving plenty and diverse buildings by leveraging generative adversarial training. The key of IAug is to blend synthesized building instances onto appropriate positions of one of the bi-temporal images. To achieve this, a building generator is employed to produce realistic building images that are consistent with the given layouts. Diverse styles are later transferred onto the generated images. We further propose context-aware blending for a realistic composite of the building and the background. We augment the existing CD datasets and also design a simple yet effective CD model - CDNet. Our method (CDNet + IAug) has achieved state-of-the-art results in two building CD datasets (LEVIR-CD and WHU-CD). Interestingly, we achieve comparable results with only 20% of the training data as the current state-of-the-art methods using 100% data. Extensive experiments have validated the effectiveness of the proposed IAug. Our augmented dataset has a lower risk of class imbalance than the original one. Conventional learning on the synthesized dataset outperforms several popular cost-sensitive algorithms on the original dataset.

Building Generator

See building generator for details.

Synthesized images (256 * 256) by the generator (trained on the AIRS building dataset).syn_example_airs

Synthesized images (64 * 64) by the generator (trained on the Inria building dataset).syn_example_inria

Installation

This code requires PyTorch 1.0 and python 3+. Please install dependencies by

pip install -r requirements.txt

Generating Images Using Pretrained Model

Once the dataset is ready, the result images can be generated using pretrained models.

  1. Download the tar of the pretrained models from the Google Drive

  2. Generate images using the pretrained model.

    python test.py --model pix2pix --name $pretrained_folder --results_dir $results_dir --dataset_mode custom --label_dir $label_dir --label_nc 2 --batchSize $batchSize --load_size $size --crop_size $size --no_instance --which_epoch lastest

    pretrained_folder is the directory name of the checkpoint file downloaded in Step 1, results_dir is the directory name to save the synthesized images, label_dir is the directory name of the semantic labels, size is the size of the label map fed to the generator.

  3. The outputs images are stored at results_dir. You can view them using the autogenerated HTML file in the directory.

For simplicity, we also provide the test script in scripts/run_test.sh, one can modify the label_dir and name and then run the script.

Training New Models

New models can be trained with the following commands.

  1. Prepare the dataset. You can first prepare the building image patches and corresponding label maps in two folders (image_dir, label_dir).

  2. Train the model.

# To train on your own custom dataset
python train.py --name [experiment_name] --dataset_mode custom --label_dir [label_dir] -- image_dir [image_dir] --label_nc 2

There are many options you can specify. Please use python train.py --help. The specified options are printed to the console. To specify the number of GPUs to utilize, use --gpu_ids. If you want to use the second and third GPUs for example, use --gpu_ids 1,2.

To log training, use --tf_log for Tensorboard. The logs are stored at [checkpoints_dir]/[name]/logs.

Acknowledge

This code borrows heavily from spade.

Color Transfer

See Color Transfer for deteils.

We resort to a simple yet effective nonlearning approach to match the color distribution of the two image sets (GAN-generated images and original images in the change detection dataset).

color_transfer

Requirements

  • Matlab

Usage

We provide two demos to show the color transfer.

When you do not have the object mask. You can edit the file ColorTransferDemo.m, modify the file path of the Im_target and Im_source. After you run this file, the transfered image is saved as result_Image.jpg.

When you do have both the building image and the object mask. You can edit the file ColorTransferDemo_with_mask.m, modify the file path of the Im_target, Im_source, m_target and m_source. After you run this file, the transfered image is saved as result_Image.jpg.

Acknowledge

This code borrows heavily from https://github.com/AissamDjahnine/ColorTransfer.

Shadow Extraction

We show a simple shadow extraction method. The extracted shadow information can be used to make a more realistic image composite in the latter process.

shadow_extraction

We provide some examples for shadow extraction. The samples are in the folder samples\shadow_sample.

Usage

You can edit the file extract_shadow.py and modify the path of the image_folder, label_folder and out_folder. Make sure that the image files are in image_folder and the corresponding label files are in label_folder. Run the following script:

python extract_shadow.py

Once you have successfully run the python file, the results can be found in the out folder.

Instance augmentation

Here, we provide the python implementation of instance augmentation.

image-20210413152845314

We provide some examples for instance augmentation. The samples are in the folder samples\SYN_CD.

Usage

You can edit the file composite_CD_sample.py and modify the following values:

#  first define the some paths
A_folder = r'samples\LEVIR\A'
B_folder = r'samples\LEVIR\B'
L_folder = r'samples\LEVIR\label'
ref_folder = r'samples\LEVIR\ref'
#  instance path
src_folder = r'samples\SYN_CD\image' #test
label_folder = r'samples\SYN_CD\shadow'  # test
out_folder = r'samples\SYN_CD\out_sample'
os.makedirs(out_folder, exist_ok=True)
# how many instance to paste per sample
M = 50

Then, run the following script:

python composite_CD_sample.py

Once you have successfully run the python file, the results can be found in the out folder.

CDNet

Coming soon~~~~

Citation

If you use this code for your research, please cite our paper:

@Article{chen2021,
    title={Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images},
    author={Hao Chen, Wenyuan Li and Zhenwei Shi},
    year={2021},
    journal={IEEE Transactions on Geoscience and Remote Sensing},
    volume={},
    number={},
    pages={1-16},
    doi={10.1109/TGRS.2021.3066802}
}
Owner
keep forward
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021