Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

Overview

SNN_Calibration

Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

Feature Comparison of SNN calibration:

Features SNN Direct Training ANN-SNN Conversion SNN Calibration
Accuract (T<100​) High Low High
Scalability to ImageNet Tiny Large Large
Training Speed Slow Fast Fast
# Required Data Full-set
(1.2M For ImageNet)
~1000 ~1000
Inference Speed Fast Slow Fast

Requirements

Pytorch 1.8

For ImageNet experiments, please be sure that you can initialize distributed environments

For CIFAR experiments, one GPU would suffice.

Pre-training ANN on CIFAR10&100

Train an ANN model with main_train.py

python CIFAR/main_train.py --dataset CIFAR10 --arch VGG16 --dpath PATH/TO/DATA --usebn

Pre-trained results:

Dataset Model Random Seed Accuracy
CIFAR10 VGG16 1000 95.76
CIFAR10 ResNet-20 1000 95.68
CIFAR100 VGG16 1000 77.98
CIFAR100 ResNet-20 1000 76.52

SNN Calibration on CIFAR10&100

Calibrate an SNN with main_calibration.py.

python CIFAR/main_calibration.py --dataset CIFAR10 --arch VGG16 --T 16 --usebn --calib advanced --dpath PATH/TO/DATA

--T is the time step, --calib is the calibration method, please use none, light, advanced for experiments.

The calibration will run for 5 times, and return the mean accuracy as well as the standard deviation.

Example results:

Architecture Datset T Random Seed Calibration Mean Acc Std.
VGG16 CIFAR10 16 1000 None 64.52 4.12
VGG16 CIFAR10 16 1000 Light 93.30 0.08
VGG16 CIFAR10 16 1000 Advanced 93.65 0.25
ResNet-20 CIFAR10 16 1000 None 67.88 3.63
ResNet-20 CIFAR10 16 1000 Light 93.89 0.20
ResNet-20 CIFAR10 16 1000 Advanced 94.33 0.12
VGG16 CIFAR100 16 1000 None 2.69 0.76
VGG16 CIFAR100 16 1000 Light 65.26 0.99
VGG16 CIFAR100 16 1000 Advanced 70.91 0.65
ResNet-20 CIFAR100 16 1000 None 39.27 2.85
ResNet-20 CIFAR100 16 1000 Light 73.89 0.15
ResNet-20 CIFAR100 16 1000 Advanced 74.48 0.16

Pre-training ANN on ImageNet

To be updaed

Owner
Yuhang Li
Research Intern at @SenseTime Group Limited
Yuhang Li
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022