Compact Bidirectional Transformer for Image Captioning

Related tags

Deep LearningCBTrans
Overview

Compact Bidirectional Transformer for Image Captioning

Requirements

  • Python 3.8
  • Pytorch 1.6
  • lmdb
  • h5py
  • tensorboardX

Prepare Data

  1. Please use git clone --recurse-submodules to clone this repository and remember to follow initialization steps in coco-caption/README.md.
  2. Download the preprocessd dataset from this link and extract it to data/.
  3. Please download the converted VinVL feature from this link and place them under data/mscoco_VinVL/. You can also optionally follow this instruction to prepare the fixed or adaptive bottom-up features extracted by Anderson and place them under data/mscoco/ or data/mscoco_adaptive/.
  4. Download part checkpoints from here and extract them to save/.

Offline Evaluation

To reproduce the results of single CBTIC model on Karpathy test split, just run

python  eval.py  --model  save/nsc-transformer-cb-VinVL-feat/model-best.pth   --infos_path  save/nsc-transformer-cb-VinVL-feat/infos_nsc-transformer-cb-VinVL-feat-best.pkl      --beam_size   2   --id  nsc-transformer-cb-VinVL-feat   --split test

To reproduce the results of ensemble of CBTIC models on Karpathy test split, just run

python eval_ensemble.py   --ids   nsc-transformer-cb-VinVL-feat  nsc-transformer-cb-VinVL-feat-seed1   nsc-transformer-cb-VinVL-feat-seed2  nsc-transformer-cb-VinVL-feat-seed3 --weights  1 1 1 1  --beam_size  2   --split  test

Online Evaluation

Please first run

python eval_ensemble.py   --split  test  --language_eval 0  --ids   nsc-transformer-cb-VinVL-feat  nsc-transformer-cb-VinVL-feat-seed1   nsc-transformer-cb-VinVL-feat-seed2  nsc-transformer-cb-VinVL-feat-seed3 --weights  1 1 1 1  --input_json  data/cocotest.json  --input_fc_dir data/mscoco_VinVL/cocobu_test2014/cocobu_fc --input_att_dir  data/mscoco_VinVL/cocobu_test2014/cocobu_att   --input_label_h5    data/cocotalk_bw_label.h5    --language_eval 0        --batch_size  128   --beam_size   2   --id   captions_test2014_cbtic_results 

and then follow the instruction to upload results.

Training

  1. In the first training stage, such as using VinVL feature, run
python  train.py   --noamopt --noamopt_warmup 20000   --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 5e-4 --num_layers 6 --input_encoding_size 512 --rnn_size 2048 --learning_rate_decay_start 0  --scheduled_sampling_start 0  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --max_epochs 15     --checkpoint_path   save/transformer-cb-VinVL-feat   --id   transformer-cb-VinVL-feat   --caption_model  cbt     --input_fc_dir   data/mscoco_VinVL/cocobu_fc   --input_att_dir   data/mscoco_VinVL/cocobu_att    --input_box_dir    data/mscoco_VinVL/cocobu_box    
  1. Then in the second training stage, you need two GPUs with 12G memory each, please copy the above pretrained model first
cd save
./copy_model.sh  transformer-cb-VinVL-feat    nsc-transformer-cb-VinVL-feat
cd ..

and then run

python  train.py    --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 1e-5 --num_layers 6 --input_encoding_size 512 --rnn_size 2048  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --self_critical_after 14  --max_epochs    30  --start_from   save/nsc-transformer-cb-VinVL-feat     --checkpoint_path   save/nsc-transformer-cb-VinVL-feat   --id  nsc-transformer-cb-VinVL-feat   --caption_model  cbt    --input_fc_dir   data/mscoco_VinVL/cocobu_fc   --input_att_dir   data/mscoco_VinVL/cocobu_att    --input_box_dir    data/mscoco_VinVL/cocobu_box 

Note

  1. Even if fixing all random seed, we find that the results of the two runs are still slightly different when using DataParallel on two GPUs. However, the results can be reproduced exactly when using one GPU.
  2. If you are interested in the ablation studies, you can use the git reflog to list all commits and use git reset --hard commit_id to change to corresponding commit.

Citation

@misc{zhou2022compact,
      title={Compact Bidirectional Transformer for Image Captioning}, 
      author={Yuanen Zhou and Zhenzhen Hu and Daqing Liu and Huixia Ben and Meng Wang},
      year={2022},
      eprint={2201.01984},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

This repository is built upon self-critical.pytorch. Thanks for the released code.

Owner
YE Zhou
YE Zhou
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

1 Nov 03, 2021
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022