Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Overview

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

This paper has been accpeted by Conference on Computer Vision and Pattern Recognition (CVPR) 2019.

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

by Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell and Kilian Q. Weinberger

Figure

Citation

@inproceedings{wang2019pseudo,
  title={Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving},
  author={Wang, Yan and Chao, Wei-Lun and Garg, Divyansh and Hariharan, Bharath and Campbell, Mark and Weinberger, Kilian},
  booktitle={CVPR},
  year={2019}
}

Update

  • 2nd July 2020: Add a jupyter script to visualize point cloud. It is in ./visualization folder.
  • 29th July 2019: submission.py will save the disparity to the numpy file, not png file. And fix the generate_lidar.py.
  • I have modifed the official avod a little bit. Now you can directly train and test pseudo-lidar with avod. Please check the code https://github.com/mileyan/avod_pl.

Contents

Introduction

3D object detection is an essential task in autonomous driving. Recent techniques excel with highly accurate detection rates, provided the 3D input data is obtained from precise but expensive LiDAR technology. Approaches based on cheaper monocular or stereo imagery data have, until now, resulted in drastically lower accuracies --- a gap that is commonly attributed to poor image-based depth estimation. However, in this paper we argue that data representation (rather than its quality) accounts for the majority of the difference. Taking the inner workings of convolutional neural networks into consideration, we propose to convert image-based depth maps to pseudo-LiDAR representations --- essentially mimicking LiDAR signal. With this representation we can apply different existing LiDAR-based detection algorithms. On the popular KITTI benchmark, our approach achieves impressive improvements over the existing state-of-the-art in image-based performance --- raising the detection accuracy of objects within 30m range from the previous state-of-the-art of 22% to an unprecedented 74%. At the time of submission our algorithm holds the highest entry on the KITTI 3D object detection leaderboard for stereo image based approaches.

Usage

1. Overview

We provide the guidance and codes to train stereo depth estimator and 3D object detector using the KITTI object detection benchmark. We also provide our pre-trained models.

2. Stereo depth estimation models

We provide our pretrained PSMNet model using the Scene Flow dataset and the 3,712 training images of the KITTI detection benchmark.

We also directly provide the pseudo-LiDAR point clouds and the ground planes of training and testing images estimated by this pre-trained model.

We also provide codes to train your own stereo depth estimator and prepare the point clouds and gound planes. If you want to use our pseudo-LiDAR data for 3D object detection, you may skip the following contents and directly move on to object detection models.

2.1 Dependencies

  • Python 3.5+
  • numpy, scikit-learn, scipy
  • KITTI 3D object detection dataset

2.2 Download the dataset

You need to download the KITTI dataset from here, including left and right color images, Velodyne point clouds, camera calibration matrices, and training labels. You also need to download the image set files from here. Then you need to organize the data in the following way.

KITTI/object/
    
    train.txt
    val.txt
    test.txt 
    
    training/
        calib/
        image_2/ #left image
        image_3/ #right image
        label_2/
        velodyne/ 

    testing/
        calib/
        image_2/
        image_3/
        velodyne/

The Velodyne point clouds (by LiDAR) are used ONLY as the ground truths to train a stereo depth estimator (e.g., PSMNet).

2.3 Generate ground-truth image disparities

Use the script./preprocessing/generate_disp.py to process all velodyne files appeared in train.txt. This is our training ground truth. Or you can directly download them from disparity. Name this folder as disparity and put it inside the training folder.

python generate_disp.py --data_path ./KITTI/object/training/ --split_file ./KITTI/object/train.txt 

2.4. Train the stereo model

You can train any stereo disparity model as you want. Here we give an example to train the PSMNet. The modified code is saved in the subfolder psmnet. Make sure you follow the README inside this folder to install the correct python and library. I strongly suggest using conda env to organize the python environments since we will use Python with different versions. Download the psmnet model pretrained on Sceneflow dataset from here.

# train psmnet with 4 TITAN X GPUs.
python ./psmnet/finetune_3d.py --maxdisp 192 \
     --model stackhourglass \
     --datapath ./KITTI/object/training/ \
     --split_file ./KITTI/object/train.txt \
     --epochs 300 \
     --lr_scale 50 \
     --loadmodel ./pretrained_sceneflow.tar \
     --savemodel ./psmnet/kitti_3d/  --btrain 12

2.5 Predict the point clouds

Predict the disparities.
# training
python ./psmnet/submission.py \
    --loadmodel ./psmnet/kitti_3d/finetune_300.tar \
    --datapath ./KITTI/object/training/ \
    --save_path ./KITTI/object/training/predict_disparity
# testing
python ./psmnet/submission.py \
    --loadmodel ./psmnet/kitti_3d/finetune_300.tar \
    --datapath ./KITTI/object/testing/ \
    --save_path ./KITTI/object/testing/predict_disparity
Convert the disparities to point clouds.
# training
python ./preprocessing/generate_lidar.py  \
    --calib_dir ./KITTI/object/training/calib/ \
    --save_dir ./KITTI/object/training/pseudo-lidar_velodyne/ \
    --disparity_dir ./KITTI/object/training/predict_disparity \
    --max_high 1
# testing
python ./preprocessing/generate_lidar.py  \
    --calib_dir ./KITTI/object/testing/calib/ \
    --save_dir ./KITTI/object/testing/pseudo-lidar_velodyne/ \
    --disparity_dir ./KITTI/object/testing/predict_disparity \
    --max_high 1

If you want to generate point cloud from depth map (like DORN), you can add --is_depth in the command.

2.6 Generate ground plane

If you want to train an AVOD model for 3D object detection, you need to generate ground planes from pseudo-lidar point clouds.

#training
python ./preprocessing/kitti_process_RANSAC.py \
    --calib ./KITTI/object/training/calib/ \
    --lidar_dir  ./KITTI/object/training/pseudo-lidar_velodyne/ \
    --planes_dir /KITTI/object/training/pseudo-lidar_planes/
#testing
python ./preprocessing/kitti_process_RANSAC.py \
    --calib ./KITTI/object/testing/calib/ \
    --lidar_dir  ./KITTI/object/testing/pseudo-lidar_velodyne/ \
    --planes_dir /KITTI/object/testing/pseudo-lidar_planes/

3. Object Detection models

AVOD model

Download the code from https://github.com/kujason/avod and install the Python dependencies.

Follow their README to prepare the data and then replace (1) files in velodyne with those in pseudo-lidar_velodyne and (2) files in planes with those in pseudo-lidar_planes. Note that you should still keep the folder names as velodyne and planes.

Follow their README to train the pyramid_cars_with_aug_example model. You can also download our pretrained model and directly evaluate on it. But if you want to submit your result to the leaderboard, you need to train it on trainval.txt.

Frustum-PointNets model

Download the code from https://github.com/charlesq34/frustum-pointnets and install the Python dependencies.

Follow their README to prepare the data and then replace files in velodyne with those in pseudo-lidar_velodyne. Note that you should still keep the folder name as velodyne.

Follow their README to train the v1 model. You can also download our pretrained model and directly evaluate on it.

Results

The main results on the validation dataset of our pseudo-LiDAR method. Figure

You can download the avod validation results from HERE.

Contact

If you have any question, please feel free to email us.

Yan Wang ([email protected]), Harry Chao([email protected]), Div Garg([email protected])

This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
PlenOctree Extraction algorithm

PlenOctrees_NeRF-SH This is an implementation of the Paper PlenOctrees for Real-time Rendering of Neural Radiance Fields. Not only the code provides t

49 Nov 05, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022