ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

Related tags

Deep Learningactnn
Overview

ActNN : Activation Compressed Training

This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training by Jianfei Chen*, Lianmin Zheng*, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W. Mahoney, and Joseph E. Gonzalez.

TL; DR. ActNN is a PyTorch library for memory-efficient training. It reduces the training memory footprint by compressing the saved activations. ActNN is implemented as a collection of memory-saving layers. These layers have an identical interface to their PyTorch counterparts.

Abstract

The increasing size of neural network models has been critical for improvements in their accuracy, but device memory is not growing at the same rate. This creates fundamental challenges for training neural networks within limited memory environments. In this work, we propose ActNN, a memory-efficient training framework that stores randomly quantized activations for back propagation. We prove the convergence of ActNN for general network architectures, and we characterize the impact of quantization on the convergence via an exact expression for the gradient variance. Using our theory, we propose novel mixed-precision quantization strategies that exploit the activation's heterogeneity across feature dimensions, samples, and layers. These techniques can be readily applied to existing dynamic graph frameworks, such as PyTorch, simply by substituting the layers. We evaluate ActNN on mainstream computer vision models for classification, detection, and segmentation tasks. On all these tasks, ActNN compresses the activation to 2 bits on average, with negligible accuracy loss. ActNN reduces the memory footprint of the activation by 12×, and it enables training with a 6.6× to 14× larger batch size.

mem_speed_r50 Batch size vs. training throughput on ResNet-50. Red cross mark means out-of-memory. The shaded yellow region denotes the possible batch sizes with full precision training. ActNN achieves significantly larger maximum batch size over other state-of-the-art systems and displays a nontrivial trade-off curve.

Install

  • Requirements
torch>=1.7.1
torchvision>=0.8.2
  • Build
cd actnn
pip install -v -e .

Usage

mem_speed_benchmark/train.py is an example on using ActNN for models from torchvision.

Basic Usage

  • Step1: Configure the optimization level
    ActNN provides several optimization levels to control the trade-off between memory saving and computational overhead. You can set the optimization level by
import actnn
# available choices are ["L0", "L1", "L2", "L3", "L4", "L5"]
actnn.set_optimization_level("L3")

See set_optimization_level for more details.

  • Step2: Convert the model to use ActNN's layers.
model = actnn.QModule(model)

Note:

  1. Convert the model before calling .cuda().
  2. Set the optimization level before invoking actnn.QModule or constructing any ActNN layers.
  3. Automatic model conversion only works with standard PyTorch layers. Please use the modules (nn.Conv2d, nn.ReLU, etc.), not the functions (F.conv2d, F.relu).
  • Step3: Print the model to confirm that all the modules (Conv2d, ReLU, BatchNorm) are correctly converted to ActNN layers.
print(model)    # Should be actnn.QConv2d, actnn.QBatchNorm2d, etc.

Advanced Features

  • Convert the model manually.
    ActNN is implemented as a collection of memory-saving layers, including actnn.QConv1d, QConv2d, QConv3d, QConvTranspose1d, QConvTranspose2d, QConvTranspose3d, QBatchNorm1d, QBatchNorm2d, QBatchNorm3d, QLinear, QReLU, QSyncBatchNorm, QMaxPool2d. These layers have identical interface to their PyTorch counterparts. You can construct the model manually using these layers as the building blocks. See ResNetBuilder and resnet_configs in image_classification/image_classification/resnet.py for example.
  • (Optional) Change the data loader
    If you want to use per-sample gradient information for adaptive quantization, you have to update the dataloader to return sample indices. You can see train_loader in mem_speed_benchmark/train.py for example. In addition, you have to update the configurations.
from actnn import config, QScheme
config.use_gradient = True
QScheme.num_samples = 1300000   # the size of training set

You can find sample code in the above script.

Examples

Benchmark Memory Usage and Training Speed

See mem_speed_benchmark. Please do NOT measure the memory usage by nvidia-smi. nvidia-smi reports the size of the memory pool allocated by PyTorch, which can be much larger than the size of acutal used memory.

Image Classification

See image_classification

Object Detection, Semantic Segmentation, Self-Supervised Learning, ...

Here is the example memory-efficient training for ResNet50, built upon the OpenMMLab toolkits. We use ActNN with the default optimization level (L3). Our training runs are available at Weights & Biases.

Installation

  1. Install mmcv
export MMCV_ROOT=/path/to/clone/actnn-mmcv
git clone https://github.com/DequanWang/actnn-mmcv $MMCV_ROOT
cd $MMCV_ROOT
MMCV_WITH_OPS=1 MMCV_WITH_ORT=0 pip install -e .
  1. Install mmdet, mmseg, mmssl, ...
export MMDET_ROOT=/path/to/clone/actnn-mmdet
git clone https://github.com/DequanWang/actnn-mmdet $MMDET_ROOT
cd $MMDET_ROOT
python setup.py develop
export MMSEG_ROOT=/path/to/clone/actnn-mmseg
git clone https://github.com/DequanWang/actnn-mmseg $MMSEG_ROOT
cd $MMSEG_ROOT
python setup.py develop
export MMSSL_ROOT=/path/to/clone/actnn-mmssl
git clone https://github.com/DequanWang/actnn-mmssl $MMSSL_ROOT
cd $MMSSL_ROOT
python setup.py develop

Single GPU training

cd $MMDET_ROOT
python tools/train.py configs/actnn/faster_rcnn_r50_fpn_1x_coco_1gpu.py
# https://wandb.ai/actnn/detection/runs/ye0aax5s
# ActNN mAP 37.4 vs Official mAP 37.4
python tools/train.py configs/actnn/retinanet_r50_fpn_1x_coco_1gpu.py
# https://wandb.ai/actnn/detection/runs/1x9cwokw
# ActNN mAP 36.3 vs Official mAP 36.5
cd $MMSEG_ROOT
python tools/train.py configs/actnn/fcn_r50-d8_512x1024_80k_cityscapes_1gpu.py
# https://wandb.ai/actnn/segmentation/runs/159if8da
# ActNN mIoU 72.9 vs Official mIoU 73.6
python tools/train.py configs/actnn/fpn_r50_512x1024_80k_cityscapes_1gpu.py
# https://wandb.ai/actnn/segmentation/runs/25j9iyv3
# ActNN mIoU 74.7 vs Official mIoU 74.5

Multiple GPUs training

cd $MMSSL_ROOT
bash tools/dist_train.sh configs/selfsup/actnn/moco_r50_v2_bs512_e200_imagenet_2gpu.py 2
# https://wandb.ai/actnn/mmssl/runs/lokf7ydo
# https://wandb.ai/actnn/mmssl/runs/2efmbuww
# ActNN top1 67.3 vs Official top1 67.7

For more detailed guidance, please refer to the docs of mmcv, mmdet, mmseg, mmssl.

FAQ

  1. Does ActNN supports CPU training?
    Currently, ActNN only supports CUDA.

  2. Accuracy degradation / diverged training with ActNN.
    ActNN applies lossy compression to the activations. In some challenging cases, our default compression strategy might be too aggressive. In this case, you may try more conservative compression strategies (which consume more memory):

    • 4-bit per-group quantization
    actnn.set_optimization_level("L2")
    • 8-bit per-group quantization
    actnn.set_optimization_level("L2")
    actnn.config.activation_compression_bits = [8]

    If none of these works, you may report to us by creating an issue.

Correspondence

Please email Jianfei Chen and Lianmin Zheng. Any questions or discussions are welcomed!

Citation

If the actnn library is helpful in your research, please consider citing our paper:

@article{chen2021actnn,
  title={ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training},
  author={Chen, Jianfei and Zheng, Lianmin and Yao, Zhewei and Wang, Dequan and Stoica, Ion and Mahoney, Michael W and Gonzalez, Joseph E},
  journal={arXiv preprint arXiv:2104.14129},
  year={2021}
}
Owner
UC Berkeley RISE
REAL-TIME INTELLIGENT SECURE EXPLAINABLE SYSTEMS
UC Berkeley RISE
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022