The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Overview

Interscript

The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts.

overview


Dataset

  • data.json contains the data in an easy to read JSON format. data.jsonl contains the data in a JSONL format. The file contains 8466 samples, one sample per line. Every sample is a JSON object with the following fields:
 {
        "input_script": "push chair in -> pull chair in; pull chair in -> push chair against wall; push chair against wall -> straighten chair legs; straighten chair legs -> Push all chairs in; line up the chairs -> push chair in",
        "input_feedback": "One would not pull chair in if they had initially pushed it in.",
        "output_script": "push chair against wall -> straighten chair legs;straighten chair legs -> Push all chairs in;line up the chairs -> push chair in;push chair in -> push chair against wall",
        "metadata": {
            "id": "301KG0KX9BKTC0HB7Z9SV1Y5HAFH2Y.2_implicit.gp",
            "goal": "push all chairs in",
            "is_distractor": false,
            "feedback_type": "implicit.gp",
            "edit": "Remove node 'pull chair in'",
            "input_script_formatted": [
                "1. line up the chairs",
                "2. push chair in",
                "3. pull chair in",
                "4. push chair against wall",
                "5. straighten chair legs",
                "6. Push all chairs in"
            ],
            "output_script_formatted": [
                "1. line up the chairs",
                "2. push chair in",
                "3. push chair against wall",
                "4. straighten chair legs",
                "5. Push all chairs in"
            ]
        }
    }

The description of the fields is as follows:

  1. input_script: Model generated script $y_{bad}$.
  2. input_feedback: User feedback on the input script $f$.
  3. output_script: Fixed output script $y_{good}$.

Metadata contains additional information about the sample. Some important fields are:

  1. id: Unique identifier of the sample.
  2. goal: Goal of the script.
  3. is_distractor: Whether the feedback is a distractor (please see Section 4 for more details).
  4. feedback_type: Type of feedback (please see Section 4 "Annotation" for more details).
  5. edit: The input_feedback presented as an edit operation on the input script, that is, the edit operation that transforms the input script into the output script.
  6. input_script_formatted: The input script presented as a list of sentences.
  7. output_script_formatted: The output script presented as a list of sentences.

Data collection process

  • We use Amazon Mechanical Turk to collect feedback on erroneous scripts from users.
  • An overview of the process is captured in the following figure:

datacollection

Amazon Mechanical Turk Template

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022