The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Overview

Interscript

The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts.

overview


Dataset

  • data.json contains the data in an easy to read JSON format. data.jsonl contains the data in a JSONL format. The file contains 8466 samples, one sample per line. Every sample is a JSON object with the following fields:
 {
        "input_script": "push chair in -> pull chair in; pull chair in -> push chair against wall; push chair against wall -> straighten chair legs; straighten chair legs -> Push all chairs in; line up the chairs -> push chair in",
        "input_feedback": "One would not pull chair in if they had initially pushed it in.",
        "output_script": "push chair against wall -> straighten chair legs;straighten chair legs -> Push all chairs in;line up the chairs -> push chair in;push chair in -> push chair against wall",
        "metadata": {
            "id": "301KG0KX9BKTC0HB7Z9SV1Y5HAFH2Y.2_implicit.gp",
            "goal": "push all chairs in",
            "is_distractor": false,
            "feedback_type": "implicit.gp",
            "edit": "Remove node 'pull chair in'",
            "input_script_formatted": [
                "1. line up the chairs",
                "2. push chair in",
                "3. pull chair in",
                "4. push chair against wall",
                "5. straighten chair legs",
                "6. Push all chairs in"
            ],
            "output_script_formatted": [
                "1. line up the chairs",
                "2. push chair in",
                "3. push chair against wall",
                "4. straighten chair legs",
                "5. Push all chairs in"
            ]
        }
    }

The description of the fields is as follows:

  1. input_script: Model generated script $y_{bad}$.
  2. input_feedback: User feedback on the input script $f$.
  3. output_script: Fixed output script $y_{good}$.

Metadata contains additional information about the sample. Some important fields are:

  1. id: Unique identifier of the sample.
  2. goal: Goal of the script.
  3. is_distractor: Whether the feedback is a distractor (please see Section 4 for more details).
  4. feedback_type: Type of feedback (please see Section 4 "Annotation" for more details).
  5. edit: The input_feedback presented as an edit operation on the input script, that is, the edit operation that transforms the input script into the output script.
  6. input_script_formatted: The input script presented as a list of sentences.
  7. output_script_formatted: The output script presented as a list of sentences.

Data collection process

  • We use Amazon Mechanical Turk to collect feedback on erroneous scripts from users.
  • An overview of the process is captured in the following figure:

datacollection

Amazon Mechanical Turk Template

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022