Change Detection Models (Remote Sensing)
Python library with Neural Networks for Change Detection based on PyTorch.
This project is inspired by segmentation_models.pytorch and built based on it.
๐ฑ
How to use
Please refer to local_test.py temporarily.
๐ญ
Models
Architectures
-
Unet [paper]
-
Unet++ [paper]
-
MAnet [paper]
-
Linknet [paper]
-
FPN [paper]
-
PSPNet [paper]
-
PAN [paper]
-
DeepLabV3 [paper]
-
DeepLabV3+ [paper]
-
UPerNet [paper]
Encoders
The following is a list of supported encoders in the CDP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (encoder_name and encoder_weights parameters).
ResNet
| Encoder | Weights | Params, M |
|---|---|---|
| resnet18 | imagenet / ssl / swsl | 11M |
| resnet34 | imagenet | 21M |
| resnet50 | imagenet / ssl / swsl | 23M |
| resnet101 | imagenet | 42M |
| resnet152 | imagenet | 58M |
ResNeXt
| Encoder | Weights | Params, M |
|---|---|---|
| resnext50_32x4d | imagenet / ssl / swsl | 22M |
| resnext101_32x4d | ssl / swsl | 42M |
| resnext101_32x8d | imagenet / instagram / ssl / swsl | 86M |
| resnext101_32x16d | instagram / ssl / swsl | 191M |
| resnext101_32x32d | 466M | |
| resnext101_32x48d | 826M |
ResNeSt
| Encoder | Weights | Params, M |
|---|---|---|
| timm-resnest14d | imagenet | 8M |
| timm-resnest26d | imagenet | 15M |
| timm-resnest50d | imagenet | 25M |
| timm-resnest101e | imagenet | 46M |
| timm-resnest200e | imagenet | 68M |
| timm-resnest269e | imagenet | 108M |
| timm-resnest50d_4s2x40d | imagenet | 28M |
| timm-resnest50d_1s4x24d | imagenet | 23M |
Res2Ne(X)t
| Encoder | Weights | Params, M |
|---|---|---|
| timm-res2net50_26w_4s | imagenet | 23M |
| timm-res2net101_26w_4s | imagenet | 43M |
| timm-res2net50_26w_6s | imagenet | 35M |
| timm-res2net50_26w_8s | imagenet | 46M |
| timm-res2net50_48w_2s | imagenet | 23M |
| timm-res2net50_14w_8s | imagenet | 23M |
| timm-res2next50 | imagenet | 22M |
RegNet(x/y)
| Encoder | Weights | Params, M |
|---|---|---|
| timm-regnetx_002 | imagenet | 2M |
| timm-regnetx_004 | imagenet | 4M |
| timm-regnetx_006 | imagenet | 5M |
| timm-regnetx_008 | imagenet | 6M |
| timm-regnetx_016 | imagenet | 8M |
| timm-regnetx_032 | imagenet | 14M |
| timm-regnetx_040 | imagenet | 20M |
| timm-regnetx_064 | imagenet | 24M |
| timm-regnetx_080 | imagenet | 37M |
| timm-regnetx_120 | imagenet | 43M |
| timm-regnetx_160 | imagenet | 52M |
| timm-regnetx_320 | imagenet | 105M |
| timm-regnety_002 | imagenet | 2M |
| timm-regnety_004 | imagenet | 3M |
| timm-regnety_006 | imagenet | 5M |
| timm-regnety_008 | imagenet | 5M |
| timm-regnety_016 | imagenet | 10M |
| timm-regnety_032 | imagenet | 17M |
| timm-regnety_040 | imagenet | 19M |
| timm-regnety_064 | imagenet | 29M |
| timm-regnety_080 | imagenet | 37M |
| timm-regnety_120 | imagenet | 49M |
| timm-regnety_160 | imagenet | 80M |
| timm-regnety_320 | imagenet | 141M |
GERNet
| Encoder | Weights | Params, M |
|---|---|---|
| timm-gernet_s | imagenet | 6M |
| timm-gernet_m | imagenet | 18M |
| timm-gernet_l | imagenet | 28M |
SE-Net
| Encoder | Weights | Params, M |
|---|---|---|
| senet154 | imagenet | 113M |
| se_resnet50 | imagenet | 26M |
| se_resnet101 | imagenet | 47M |
| se_resnet152 | imagenet | 64M |
| se_resnext50_32x4d | imagenet | 25M |
| se_resnext101_32x4d | imagenet | 46M |
SK-ResNe(X)t
| Encoder | Weights | Params, M |
|---|---|---|
| timm-skresnet18 | imagenet | 11M |
| timm-skresnet34 | imagenet | 21M |
| timm-skresnext50_32x4d | imagenet | 25M |
DenseNet
| Encoder | Weights | Params, M |
|---|---|---|
| densenet121 | imagenet | 6M |
| densenet169 | imagenet | 12M |
| densenet201 | imagenet | 18M |
| densenet161 | imagenet | 26M |
Inception
| Encoder | Weights | Params, M |
|---|---|---|
| inceptionresnetv2 | imagenet / imagenet+background | 54M |
| inceptionv4 | imagenet / imagenet+background | 41M |
| xception | imagenet | 22M |
EfficientNet
| Encoder | Weights | Params, M |
|---|---|---|
| efficientnet-b0 | imagenet | 4M |
| efficientnet-b1 | imagenet | 6M |
| efficientnet-b2 | imagenet | 7M |
| efficientnet-b3 | imagenet | 10M |
| efficientnet-b4 | imagenet | 17M |
| efficientnet-b5 | imagenet | 28M |
| efficientnet-b6 | imagenet | 40M |
| efficientnet-b7 | imagenet | 63M |
| timm-efficientnet-b0 | imagenet / advprop / noisy-student | 4M |
| timm-efficientnet-b1 | imagenet / advprop / noisy-student | 6M |
| timm-efficientnet-b2 | imagenet / advprop / noisy-student | 7M |
| timm-efficientnet-b3 | imagenet / advprop / noisy-student | 10M |
| timm-efficientnet-b4 | imagenet / advprop / noisy-student | 17M |
| timm-efficientnet-b5 | imagenet / advprop / noisy-student | 28M |
| timm-efficientnet-b6 | imagenet / advprop / noisy-student | 40M |
| timm-efficientnet-b7 | imagenet / advprop / noisy-student | 63M |
| timm-efficientnet-b8 | imagenet / advprop | 84M |
| timm-efficientnet-l2 | noisy-student | 474M |
| timm-efficientnet-lite0 | imagenet | 4M |
| timm-efficientnet-lite1 | imagenet | 5M |
| timm-efficientnet-lite2 | imagenet | 6M |
| timm-efficientnet-lite3 | imagenet | 8M |
| timm-efficientnet-lite4 | imagenet | 13M |
MobileNet
| Encoder | Weights | Params, M |
|---|---|---|
| mobilenet_v2 | imagenet | 2M |
| timm-mobilenetv3_large_075 | imagenet | 1.78M |
| timm-mobilenetv3_large_100 | imagenet | 2.97M |
| timm-mobilenetv3_large_minimal_100 | imagenet | 1.41M |
| timm-mobilenetv3_small_075 | imagenet | 0.57M |
| timm-mobilenetv3_small_100 | imagenet | 0.93M |
| timm-mobilenetv3_small_minimal_100 | imagenet | 0.43M |
DPN
| Encoder | Weights | Params, M |
|---|---|---|
| dpn68 | imagenet | 11M |
| dpn68b | imagenet+5k | 11M |
| dpn92 | imagenet+5k | 34M |
| dpn98 | imagenet | 58M |
| dpn107 | imagenet+5k | 84M |
| dpn131 | imagenet | 76M |
VGG
| Encoder | Weights | Params, M |
|---|---|---|
| vgg11 | imagenet | 9M |
| vgg11_bn | imagenet | 9M |
| vgg13 | imagenet | 9M |
| vgg13_bn | imagenet | 9M |
| vgg16 | imagenet | 14M |
| vgg16_bn | imagenet | 14M |
| vgg19 | imagenet | 20M |
| vgg19_bn | imagenet | 20M |
๐
Dataset
- LEVIR-CD
- SVCD [google drive | baidu disk (x8gi)]
- ...
๐
Citing
@misc{likyoocdp:2021,
Author = {Kaiyu Li, Fulin Sun},
Title = {Change Detection Pytorch},
Year = {2021},
Publisher = {GitHub},
Journal = {GitHub repository},
Howpublished = {\url{https://github.com/likyoo/change_detection.pytorch}}
}