Deep learning models for change detection of remote sensing images

Overview

Change Detection Models (Remote Sensing)

Python library with Neural Networks for Change Detection based on PyTorch.

โšก โšก โšก I am trying to build this project, if you are interested, don't hesitate to join us!

๐Ÿ‘ฏ ๐Ÿ‘ฏ ๐Ÿ‘ฏ Contact me at [email protected] or pull a request directly.


This project is inspired by segmentation_models.pytorch and built based on it. ๐Ÿ˜„

๐ŸŒฑ How to use

Please refer to local_test.py temporarily.


๐Ÿ”ญ Models

Architectures

Encoders

The following is a list of supported encoders in the CDP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (encoder_name and encoder_weights parameters).

ResNet
Encoder Weights Params, M
resnet18 imagenet / ssl / swsl 11M
resnet34 imagenet 21M
resnet50 imagenet / ssl / swsl 23M
resnet101 imagenet 42M
resnet152 imagenet 58M
ResNeXt
Encoder Weights Params, M
resnext50_32x4d imagenet / ssl / swsl 22M
resnext101_32x4d ssl / swsl 42M
resnext101_32x8d imagenet / instagram / ssl / swsl 86M
resnext101_32x16d instagram / ssl / swsl 191M
resnext101_32x32d instagram 466M
resnext101_32x48d instagram 826M
ResNeSt
Encoder Weights Params, M
timm-resnest14d imagenet 8M
timm-resnest26d imagenet 15M
timm-resnest50d imagenet 25M
timm-resnest101e imagenet 46M
timm-resnest200e imagenet 68M
timm-resnest269e imagenet 108M
timm-resnest50d_4s2x40d imagenet 28M
timm-resnest50d_1s4x24d imagenet 23M
Res2Ne(X)t
Encoder Weights Params, M
timm-res2net50_26w_4s imagenet 23M
timm-res2net101_26w_4s imagenet 43M
timm-res2net50_26w_6s imagenet 35M
timm-res2net50_26w_8s imagenet 46M
timm-res2net50_48w_2s imagenet 23M
timm-res2net50_14w_8s imagenet 23M
timm-res2next50 imagenet 22M
RegNet(x/y)
Encoder Weights Params, M
timm-regnetx_002 imagenet 2M
timm-regnetx_004 imagenet 4M
timm-regnetx_006 imagenet 5M
timm-regnetx_008 imagenet 6M
timm-regnetx_016 imagenet 8M
timm-regnetx_032 imagenet 14M
timm-regnetx_040 imagenet 20M
timm-regnetx_064 imagenet 24M
timm-regnetx_080 imagenet 37M
timm-regnetx_120 imagenet 43M
timm-regnetx_160 imagenet 52M
timm-regnetx_320 imagenet 105M
timm-regnety_002 imagenet 2M
timm-regnety_004 imagenet 3M
timm-regnety_006 imagenet 5M
timm-regnety_008 imagenet 5M
timm-regnety_016 imagenet 10M
timm-regnety_032 imagenet 17M
timm-regnety_040 imagenet 19M
timm-regnety_064 imagenet 29M
timm-regnety_080 imagenet 37M
timm-regnety_120 imagenet 49M
timm-regnety_160 imagenet 80M
timm-regnety_320 imagenet 141M
GERNet
Encoder Weights Params, M
timm-gernet_s imagenet 6M
timm-gernet_m imagenet 18M
timm-gernet_l imagenet 28M
SE-Net
Encoder Weights Params, M
senet154 imagenet 113M
se_resnet50 imagenet 26M
se_resnet101 imagenet 47M
se_resnet152 imagenet 64M
se_resnext50_32x4d imagenet 25M
se_resnext101_32x4d imagenet 46M
SK-ResNe(X)t
Encoder Weights Params, M
timm-skresnet18 imagenet 11M
timm-skresnet34 imagenet 21M
timm-skresnext50_32x4d imagenet 25M
DenseNet
Encoder Weights Params, M
densenet121 imagenet 6M
densenet169 imagenet 12M
densenet201 imagenet 18M
densenet161 imagenet 26M
Inception
Encoder Weights Params, M
inceptionresnetv2 imagenet / imagenet+background 54M
inceptionv4 imagenet / imagenet+background 41M
xception imagenet 22M
EfficientNet
Encoder Weights Params, M
efficientnet-b0 imagenet 4M
efficientnet-b1 imagenet 6M
efficientnet-b2 imagenet 7M
efficientnet-b3 imagenet 10M
efficientnet-b4 imagenet 17M
efficientnet-b5 imagenet 28M
efficientnet-b6 imagenet 40M
efficientnet-b7 imagenet 63M
timm-efficientnet-b0 imagenet / advprop / noisy-student 4M
timm-efficientnet-b1 imagenet / advprop / noisy-student 6M
timm-efficientnet-b2 imagenet / advprop / noisy-student 7M
timm-efficientnet-b3 imagenet / advprop / noisy-student 10M
timm-efficientnet-b4 imagenet / advprop / noisy-student 17M
timm-efficientnet-b5 imagenet / advprop / noisy-student 28M
timm-efficientnet-b6 imagenet / advprop / noisy-student 40M
timm-efficientnet-b7 imagenet / advprop / noisy-student 63M
timm-efficientnet-b8 imagenet / advprop 84M
timm-efficientnet-l2 noisy-student 474M
timm-efficientnet-lite0 imagenet 4M
timm-efficientnet-lite1 imagenet 5M
timm-efficientnet-lite2 imagenet 6M
timm-efficientnet-lite3 imagenet 8M
timm-efficientnet-lite4 imagenet 13M
MobileNet
Encoder Weights Params, M
mobilenet_v2 imagenet 2M
timm-mobilenetv3_large_075 imagenet 1.78M
timm-mobilenetv3_large_100 imagenet 2.97M
timm-mobilenetv3_large_minimal_100 imagenet 1.41M
timm-mobilenetv3_small_075 imagenet 0.57M
timm-mobilenetv3_small_100 imagenet 0.93M
timm-mobilenetv3_small_minimal_100 imagenet 0.43M
DPN
Encoder Weights Params, M
dpn68 imagenet 11M
dpn68b imagenet+5k 11M
dpn92 imagenet+5k 34M
dpn98 imagenet 58M
dpn107 imagenet+5k 84M
dpn131 imagenet 76M
VGG
Encoder Weights Params, M
vgg11 imagenet 9M
vgg11_bn imagenet 9M
vgg13 imagenet 9M
vgg13_bn imagenet 9M
vgg16 imagenet 14M
vgg16_bn imagenet 14M
vgg19 imagenet 20M
vgg19_bn imagenet 20M

๐Ÿšš Dataset

๐Ÿ“ƒ Citing

@misc{likyoocdp:2021,
  Author = {Kaiyu Li, Fulin Sun},
  Title = {Change Detection Pytorch},
  Year = {2021},
  Publisher = {GitHub},
  Journal = {GitHub repository},
  Howpublished = {\url{https://github.com/likyoo/change_detection.pytorch}}
}

๐Ÿ“š Reference

Comments
  • Suggest to loosen the dependency on albumentations

    Suggest to loosen the dependency on albumentations

    Hi, your project change_detection.pytorch(commit id: 0a86d51b31276d9c413798ab3fb332889f02d8aa) requires "albumentations==1.0.3" in its dependency. After analyzing the source code, we found that the following versions of albumentations can also be suitable, i.e., albumentations 1.0.0, 1.0.1, 1.0.2, since all functions that you directly (8 APIs: albumentations.core.transforms_interface.BasicTransform.init, albumentations.augmentations.geometric.resize.Resize.init, albumentations.core.composition.Compose.init, albumentations.pytorch.transforms.ToTensorV2.init, albumentations.augmentations.crops.functional.random_crop, albumentations.core.transforms_interface.DualTransform.init, albumentations.augmentations.crops.transforms.RandomCrop.init, albumentations.augmentations.transforms.Normalize.init) or indirectly (propagate to 11 albumentations's internal APIs and 0 outsider APIs) used from the package have not been changed in these versions, thus not affecting your usage.

    Therefore, we believe that it is quite safe to loose your dependency on albumentations from "albumentations==1.0.3" to "albumentations>=1.0.0,<=1.0.3". This will improve the applicability of change_detection.pytorch and reduce the possibility of any further dependency conflict with other projects.

    May I pull a request to further loosen the dependency on albumentations?

    By the way, could you please tell us whether such an automatic tool for dependency analysis may be potentially helpful for maintaining dependencies easier during your development?

    opened by Agnes-U 3
  • dimensional error

    dimensional error

    ๆ‚จๅฅฝ๏ผŒๆˆ‘ๅœจ่ฟ่กŒlocal_test.pyๆ–‡ไปถๆ—ถๅ‡บ็Žฐไบ†้”™่ฏฏ๏ผŒ่€Œๆˆ‘ไธ€็›ด่งฃๅ†ณไธไบ†๏ผŒ้”™่ฏฏๅฆ‚ไธ‹๏ผš RuntimeError: Expected 4-dimensional input for 4-dimensional weight [64, 3, 7, 7], but got 3-dimensional input of size [3, 256, 256] instead ๆˆ‘ๆƒณ็Ÿฅ้“[6,3,7,7]ไปฃ่กจ็š„ๆ˜ฏไป€ไนˆ๏ผŸ ่ฟ™ไธช้”™่ฏฏๆ˜ฏๅ‘็”Ÿๅœจvaled้ƒจๅˆ†๏ผŒๅœจๆ‰ง่กŒepoch1ๆ—ถtrainๅฏไปฅๆญฃๅธธ่ฏปๅ–ๅ›พ็‰‡ๅนถ่ฟ่กŒ๏ผŒไฝ†ๅˆฐvaledๅฐฑๆŠฅ้”™ไบ†๏ผŒๅธŒๆœ›่ƒฝ่Žทๅพ—ๆ‚จ็š„ๅปบ่ฎฎใ€‚

    opened by 18339185538 0
  • Evaluation with different thresholds give the same results

    Evaluation with different thresholds give the same results

    This piece of code :

    for x in np.arange(0.6, 0.9, 0.1):
        print('Eval with TH:', x)
        metrics = [
            cdp.utils.metrics.Fscore(activation='argmax2d', threshold=x),
            cdp.utils.metrics.Precision(activation='argmax2d', threshold=x),
            cdp.utils.metrics.Recall(activation='argmax2d', threshold=x),
        ]
    
        valid_epoch = cdp.utils.train.ValidEpoch(
            model,
            loss=loss,
            metrics=metrics,
            device=DEVICE,
            verbose=True,
        )
    
        valid_logs = valid_epoch.run(valid_loader)
        print(valid_logs)
    

    Give me the following result:

    Eval with TH: 0.6
    valid: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 505/505 [01:12<00:00,  6.98it/s, cross_entropy_loss - 0.08708, fscore - 0.8799, precision - 0.8946, recall - 0.8789]
    {'cross_entropy_loss': 0.0870812193864016, 'fscore': 0.8798528309538921, 'precision': 0.8946225793644936, 'recall': 0.8789094516579565}
    
    Eval with TH: 0.7
    valid: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 505/505 [01:12<00:00,  6.99it/s, cross_entropy_loss - 0.08708, fscore - 0.8799, precision - 0.8946, recall - 0.8789]
    {'cross_entropy_loss': 0.08708121913835626, 'fscore': 0.8798528309538921, 'precision': 0.8946225793644936, 'recall': 0.8789094516579565}
    
    Eval with TH: 0.7999999999999999
    valid: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 505/505 [01:11<00:00,  7.02it/s, cross_entropy_loss - 0.08708, fscore - 0.8799, precision - 0.8946, recall - 0.8789]
    {'cross_entropy_loss': 0.08708121978843793, 'fscore': 0.8798528309538921, 'precision': 0.8946225793644936, 'recall': 0.8789094516579565}
    
    opened by mikel-brostrom 0
  • Load trained model weigths

    Load trained model weigths

    Hi @likyoo ,

    I study with yoru repo for my project.I have been added to new features to your repo.I'll share it with you when I'm done.

    But I have a significant question;

    How can I load weigths after training operation?

    opened by ozanpkr 1
  • How to test on new images?

    How to test on new images?

    Dear @likyoo thanks for your open source project. I have trained models and saved the best model. Now, how can I test model on new images (not validation)

    opened by manapshymyr-OB 0
Releases(v0.1.0)
Owner
Kaiyu Li
CV & RS & ML Sys
Kaiyu Li
DANA paper supplementary materials

DANA Supplements This repository stores the data, results, and R scripts to generate these reuslts and figures for the corresponding paper Depth Norma

0 Dec 17, 2021
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
๐Ÿ› ๏ธ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022