Deep learning models for change detection of remote sensing images

Overview

Change Detection Models (Remote Sensing)

Python library with Neural Networks for Change Detection based on PyTorch.

โšก โšก โšก I am trying to build this project, if you are interested, don't hesitate to join us!

๐Ÿ‘ฏ ๐Ÿ‘ฏ ๐Ÿ‘ฏ Contact me at [email protected] or pull a request directly.


This project is inspired by segmentation_models.pytorch and built based on it. ๐Ÿ˜„

๐ŸŒฑ How to use

Please refer to local_test.py temporarily.


๐Ÿ”ญ Models

Architectures

Encoders

The following is a list of supported encoders in the CDP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (encoder_name and encoder_weights parameters).

ResNet
Encoder Weights Params, M
resnet18 imagenet / ssl / swsl 11M
resnet34 imagenet 21M
resnet50 imagenet / ssl / swsl 23M
resnet101 imagenet 42M
resnet152 imagenet 58M
ResNeXt
Encoder Weights Params, M
resnext50_32x4d imagenet / ssl / swsl 22M
resnext101_32x4d ssl / swsl 42M
resnext101_32x8d imagenet / instagram / ssl / swsl 86M
resnext101_32x16d instagram / ssl / swsl 191M
resnext101_32x32d instagram 466M
resnext101_32x48d instagram 826M
ResNeSt
Encoder Weights Params, M
timm-resnest14d imagenet 8M
timm-resnest26d imagenet 15M
timm-resnest50d imagenet 25M
timm-resnest101e imagenet 46M
timm-resnest200e imagenet 68M
timm-resnest269e imagenet 108M
timm-resnest50d_4s2x40d imagenet 28M
timm-resnest50d_1s4x24d imagenet 23M
Res2Ne(X)t
Encoder Weights Params, M
timm-res2net50_26w_4s imagenet 23M
timm-res2net101_26w_4s imagenet 43M
timm-res2net50_26w_6s imagenet 35M
timm-res2net50_26w_8s imagenet 46M
timm-res2net50_48w_2s imagenet 23M
timm-res2net50_14w_8s imagenet 23M
timm-res2next50 imagenet 22M
RegNet(x/y)
Encoder Weights Params, M
timm-regnetx_002 imagenet 2M
timm-regnetx_004 imagenet 4M
timm-regnetx_006 imagenet 5M
timm-regnetx_008 imagenet 6M
timm-regnetx_016 imagenet 8M
timm-regnetx_032 imagenet 14M
timm-regnetx_040 imagenet 20M
timm-regnetx_064 imagenet 24M
timm-regnetx_080 imagenet 37M
timm-regnetx_120 imagenet 43M
timm-regnetx_160 imagenet 52M
timm-regnetx_320 imagenet 105M
timm-regnety_002 imagenet 2M
timm-regnety_004 imagenet 3M
timm-regnety_006 imagenet 5M
timm-regnety_008 imagenet 5M
timm-regnety_016 imagenet 10M
timm-regnety_032 imagenet 17M
timm-regnety_040 imagenet 19M
timm-regnety_064 imagenet 29M
timm-regnety_080 imagenet 37M
timm-regnety_120 imagenet 49M
timm-regnety_160 imagenet 80M
timm-regnety_320 imagenet 141M
GERNet
Encoder Weights Params, M
timm-gernet_s imagenet 6M
timm-gernet_m imagenet 18M
timm-gernet_l imagenet 28M
SE-Net
Encoder Weights Params, M
senet154 imagenet 113M
se_resnet50 imagenet 26M
se_resnet101 imagenet 47M
se_resnet152 imagenet 64M
se_resnext50_32x4d imagenet 25M
se_resnext101_32x4d imagenet 46M
SK-ResNe(X)t
Encoder Weights Params, M
timm-skresnet18 imagenet 11M
timm-skresnet34 imagenet 21M
timm-skresnext50_32x4d imagenet 25M
DenseNet
Encoder Weights Params, M
densenet121 imagenet 6M
densenet169 imagenet 12M
densenet201 imagenet 18M
densenet161 imagenet 26M
Inception
Encoder Weights Params, M
inceptionresnetv2 imagenet / imagenet+background 54M
inceptionv4 imagenet / imagenet+background 41M
xception imagenet 22M
EfficientNet
Encoder Weights Params, M
efficientnet-b0 imagenet 4M
efficientnet-b1 imagenet 6M
efficientnet-b2 imagenet 7M
efficientnet-b3 imagenet 10M
efficientnet-b4 imagenet 17M
efficientnet-b5 imagenet 28M
efficientnet-b6 imagenet 40M
efficientnet-b7 imagenet 63M
timm-efficientnet-b0 imagenet / advprop / noisy-student 4M
timm-efficientnet-b1 imagenet / advprop / noisy-student 6M
timm-efficientnet-b2 imagenet / advprop / noisy-student 7M
timm-efficientnet-b3 imagenet / advprop / noisy-student 10M
timm-efficientnet-b4 imagenet / advprop / noisy-student 17M
timm-efficientnet-b5 imagenet / advprop / noisy-student 28M
timm-efficientnet-b6 imagenet / advprop / noisy-student 40M
timm-efficientnet-b7 imagenet / advprop / noisy-student 63M
timm-efficientnet-b8 imagenet / advprop 84M
timm-efficientnet-l2 noisy-student 474M
timm-efficientnet-lite0 imagenet 4M
timm-efficientnet-lite1 imagenet 5M
timm-efficientnet-lite2 imagenet 6M
timm-efficientnet-lite3 imagenet 8M
timm-efficientnet-lite4 imagenet 13M
MobileNet
Encoder Weights Params, M
mobilenet_v2 imagenet 2M
timm-mobilenetv3_large_075 imagenet 1.78M
timm-mobilenetv3_large_100 imagenet 2.97M
timm-mobilenetv3_large_minimal_100 imagenet 1.41M
timm-mobilenetv3_small_075 imagenet 0.57M
timm-mobilenetv3_small_100 imagenet 0.93M
timm-mobilenetv3_small_minimal_100 imagenet 0.43M
DPN
Encoder Weights Params, M
dpn68 imagenet 11M
dpn68b imagenet+5k 11M
dpn92 imagenet+5k 34M
dpn98 imagenet 58M
dpn107 imagenet+5k 84M
dpn131 imagenet 76M
VGG
Encoder Weights Params, M
vgg11 imagenet 9M
vgg11_bn imagenet 9M
vgg13 imagenet 9M
vgg13_bn imagenet 9M
vgg16 imagenet 14M
vgg16_bn imagenet 14M
vgg19 imagenet 20M
vgg19_bn imagenet 20M

๐Ÿšš Dataset

๐Ÿ“ƒ Citing

@misc{likyoocdp:2021,
  Author = {Kaiyu Li, Fulin Sun},
  Title = {Change Detection Pytorch},
  Year = {2021},
  Publisher = {GitHub},
  Journal = {GitHub repository},
  Howpublished = {\url{https://github.com/likyoo/change_detection.pytorch}}
}

๐Ÿ“š Reference

Comments
  • Suggest to loosen the dependency on albumentations

    Suggest to loosen the dependency on albumentations

    Hi, your project change_detection.pytorch(commit id: 0a86d51b31276d9c413798ab3fb332889f02d8aa) requires "albumentations==1.0.3" in its dependency. After analyzing the source code, we found that the following versions of albumentations can also be suitable, i.e., albumentations 1.0.0, 1.0.1, 1.0.2, since all functions that you directly (8 APIs: albumentations.core.transforms_interface.BasicTransform.init, albumentations.augmentations.geometric.resize.Resize.init, albumentations.core.composition.Compose.init, albumentations.pytorch.transforms.ToTensorV2.init, albumentations.augmentations.crops.functional.random_crop, albumentations.core.transforms_interface.DualTransform.init, albumentations.augmentations.crops.transforms.RandomCrop.init, albumentations.augmentations.transforms.Normalize.init) or indirectly (propagate to 11 albumentations's internal APIs and 0 outsider APIs) used from the package have not been changed in these versions, thus not affecting your usage.

    Therefore, we believe that it is quite safe to loose your dependency on albumentations from "albumentations==1.0.3" to "albumentations>=1.0.0,<=1.0.3". This will improve the applicability of change_detection.pytorch and reduce the possibility of any further dependency conflict with other projects.

    May I pull a request to further loosen the dependency on albumentations?

    By the way, could you please tell us whether such an automatic tool for dependency analysis may be potentially helpful for maintaining dependencies easier during your development?

    opened by Agnes-U 3
  • dimensional error

    dimensional error

    ๆ‚จๅฅฝ๏ผŒๆˆ‘ๅœจ่ฟ่กŒlocal_test.pyๆ–‡ไปถๆ—ถๅ‡บ็Žฐไบ†้”™่ฏฏ๏ผŒ่€Œๆˆ‘ไธ€็›ด่งฃๅ†ณไธไบ†๏ผŒ้”™่ฏฏๅฆ‚ไธ‹๏ผš RuntimeError: Expected 4-dimensional input for 4-dimensional weight [64, 3, 7, 7], but got 3-dimensional input of size [3, 256, 256] instead ๆˆ‘ๆƒณ็Ÿฅ้“[6,3,7,7]ไปฃ่กจ็š„ๆ˜ฏไป€ไนˆ๏ผŸ ่ฟ™ไธช้”™่ฏฏๆ˜ฏๅ‘็”Ÿๅœจvaled้ƒจๅˆ†๏ผŒๅœจๆ‰ง่กŒepoch1ๆ—ถtrainๅฏไปฅๆญฃๅธธ่ฏปๅ–ๅ›พ็‰‡ๅนถ่ฟ่กŒ๏ผŒไฝ†ๅˆฐvaledๅฐฑๆŠฅ้”™ไบ†๏ผŒๅธŒๆœ›่ƒฝ่Žทๅพ—ๆ‚จ็š„ๅปบ่ฎฎใ€‚

    opened by 18339185538 0
  • Evaluation with different thresholds give the same results

    Evaluation with different thresholds give the same results

    This piece of code :

    for x in np.arange(0.6, 0.9, 0.1):
        print('Eval with TH:', x)
        metrics = [
            cdp.utils.metrics.Fscore(activation='argmax2d', threshold=x),
            cdp.utils.metrics.Precision(activation='argmax2d', threshold=x),
            cdp.utils.metrics.Recall(activation='argmax2d', threshold=x),
        ]
    
        valid_epoch = cdp.utils.train.ValidEpoch(
            model,
            loss=loss,
            metrics=metrics,
            device=DEVICE,
            verbose=True,
        )
    
        valid_logs = valid_epoch.run(valid_loader)
        print(valid_logs)
    

    Give me the following result:

    Eval with TH: 0.6
    valid: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 505/505 [01:12<00:00,  6.98it/s, cross_entropy_loss - 0.08708, fscore - 0.8799, precision - 0.8946, recall - 0.8789]
    {'cross_entropy_loss': 0.0870812193864016, 'fscore': 0.8798528309538921, 'precision': 0.8946225793644936, 'recall': 0.8789094516579565}
    
    Eval with TH: 0.7
    valid: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 505/505 [01:12<00:00,  6.99it/s, cross_entropy_loss - 0.08708, fscore - 0.8799, precision - 0.8946, recall - 0.8789]
    {'cross_entropy_loss': 0.08708121913835626, 'fscore': 0.8798528309538921, 'precision': 0.8946225793644936, 'recall': 0.8789094516579565}
    
    Eval with TH: 0.7999999999999999
    valid: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 505/505 [01:11<00:00,  7.02it/s, cross_entropy_loss - 0.08708, fscore - 0.8799, precision - 0.8946, recall - 0.8789]
    {'cross_entropy_loss': 0.08708121978843793, 'fscore': 0.8798528309538921, 'precision': 0.8946225793644936, 'recall': 0.8789094516579565}
    
    opened by mikel-brostrom 0
  • Load trained model weigths

    Load trained model weigths

    Hi @likyoo ,

    I study with yoru repo for my project.I have been added to new features to your repo.I'll share it with you when I'm done.

    But I have a significant question;

    How can I load weigths after training operation?

    opened by ozanpkr 1
  • How to test on new images?

    How to test on new images?

    Dear @likyoo thanks for your open source project. I have trained models and saved the best model. Now, how can I test model on new images (not validation)

    opened by manapshymyr-OB 0
Releases(v0.1.0)
Owner
Kaiyu Li
CV & RS & ML Sys
Kaiyu Li
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Trรถster 1 Oct 24, 2021
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonรกลก Kulhรกnek 169 Dec 30, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)โ€œ.

Artifact โ€ข Reproduce Bugs โ€ข Quick Start โ€ข Installation โ€ข Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | ็ฎ€ไฝ“ไธญๆ–‡ NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
PyTorch implementation of spectral graph ConvNets, NIPSโ€™16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023