[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Overview

Delving into Deep Imbalanced Regression

This repository contains the implementation code for paper:
Delving into Deep Imbalanced Regression
Yuzhe Yang, Kaiwen Zha, Ying-Cong Chen, Hao Wang, Dina Katabi
38th International Conference on Machine Learning (ICML 2021), Long Oral
[Project Page] [Paper] [Video] [Blog Post]


Deep Imbalanced Regression (DIR) aims to learn from imbalanced data with continuous targets,
tackle potential missing data for certain regions, and generalize to the entire target range.

Beyond Imbalanced Classification: Brief Introduction for DIR

Existing techniques for learning from imbalanced data focus on targets with categorical indices, i.e., the targets are different classes. However, many real-world tasks involve continuous and even infinite target values. We systematically investigate Deep Imbalanced Regression (DIR), which aims to learn continuous targets from natural imbalanced data, deal with potential missing data for certain target values, and generalize to the entire target range.

We curate and benchmark large-scale DIR datasets for common real-world tasks in computer vision, natural language processing, and healthcare domains, ranging from single-value prediction such as age, text similarity score, health condition score, to dense-value prediction such as depth.

Usage

We separate the codebase for different datasets into different subfolders. Please go into the subfolders for more information (e.g., installation, dataset preparation, training, evaluation & models).

IMDB-WIKI-DIR  |  AgeDB-DIR  |  NYUD2-DIR  |  STS-B-DIR

Highlights

(1) ✔️ New Task: Deep Imbalanced Regression (DIR)

(2) ✔️ New Techniques:

image image
Label distribution smoothing (LDS) Feature distribution smoothing (FDS)

(3) ✔️ New Benchmarks:

  • Computer Vision: 💡 IMDB-WIKI-DIR (age) / AgeDB-DIR (age) / NYUD2-DIR (depth)
  • Natural Language Processing: 📋 STS-B-DIR (text similarity score)
  • Healthcare: 🏥 SHHS-DIR (health condition score)
IMDB-WIKI-DIR AgeDB-DIR NYUD2-DIR STS-B-DIR SHHS-DIR
image image image image image

Updates

  • [06/2021] We provide a hands-on tutorial of DIR. Check it out!
  • [05/2021] We create a Blog post for this work (version in Chinese is also available here). Check it out for more details!
  • [05/2021] Paper accepted to ICML 2021 as a Long Talk. We have released the code and models. You can find all reproduced checkpoints via this link, or go into each subfolder for models for each dataset.
  • [02/2021] arXiv version posted. Please stay tuned for updates.

Citation

If you find this code or idea useful, please cite our work:

@inproceedings{yang2021delving,
  title={Delving into Deep Imbalanced Regression},
  author={Yang, Yuzhe and Zha, Kaiwen and Chen, Ying-Cong and Wang, Hao and Katabi, Dina},
  booktitle={International Conference on Machine Learning (ICML)},
  year={2021}
}

Contact

If you have any questions, feel free to contact us through email ([email protected] & [email protected]) or Github issues. Enjoy!

Owner
Yuzhe Yang
Ph.D. student at MIT CSAIL
Yuzhe Yang
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
👨‍💻 run nanosaur in simulation with Gazebo/Ingnition

🦕 👨‍💻 nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud.

Lidar with Velocity A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud. related paper: Lidar with Velocity : Motion

ISEE Research Group 164 Dec 30, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022