Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

Overview

KnowPrompt

Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

Requirements

To install requirements:

pip install -r requirements.txt

Datasets

We provide all the datasets and prompts used in our experiments.

The expected structure of files is:

knowprompt
 |-- dataset
 |    |-- semeval
 |    |    |-- train.txt       
 |    |    |-- dev.txt
 |    |    |-- test.txt
 |    |    |-- temp.txt
 |    |    |-- rel2id.json
 |    |-- dialogue
 |    |    |-- train.json       
 |    |    |-- dev.json
 |    |    |-- test.json
 |    |    |-- rel2id.json
 |    |-- tacred
 |    |    |-- train.txt       
 |    |    |-- dev.txt
 |    |    |-- test.txt
 |    |    |-- temp.txt
 |    |    |-- rel2id.json
 |    |-- tacrev
 |    |    |-- train.txt       
 |    |    |-- dev.txt
 |    |    |-- test.txt
 |    |    |-- temp.txt
 |    |    |-- rel2id.json
 |    |-- retacred
 |    |    |-- train.txt       
 |    |    |-- dev.txt
 |    |    |-- test.txt
 |    |    |-- temp.txt
 |    |    |-- rel2id.json
 |-- scripts
 |    |-- semeval.sh
 |    |-- dialogue.sh
 |    |-- ...
 

Run the experiments

Initialize the answer words

Use the comand below to get the answer words to use in the training.

python get_label_word.py --model_name_or_path bert-large-uncased  --dataset_name semeval

The {answer_words}.ptwill be saved in the dataset, you need to assign the model_name_or_path and dataset_name in the get_label_word.py.

Split dataset

Download the data first, and put it to dataset folder. Run the comand below, and get the few shot dataset.

python generate_k_shot.py --data_dir ./dataset --k 8 --dataset semeval
cd dataset
cd semeval
cp rel2id.json val.txt test.txt ./k-shot/8-1

You need to modify the k and dataset to assign k-shot and dataset. Here we default seed as 1,2,3,4,5 to split each k-shot, you can revise it in the generate_k_shot.py

Let's run

Our script code can automatically run the experiments in 8-shot, 16-shot, 32-shot and standard supervised settings with both the procedures of train, eval and test. We just choose the random seed to be 1 as an example in our code. Actually you can perform multiple experments with different seeds.

Example for SEMEVAL

Train the KonwPrompt model on SEMEVAL with the following command:

>> bash scripts/semeval.sh  # for roberta-large

As the scripts for TACRED-Revist, Re-TACRED, Wiki80 included in our paper are also provided, you just need to run it like above example.

Example for DialogRE

As the data format of DialogRE is very different from other dataset, Class of processor is also different. Train the KonwPrompt model on DialogRE with the following command:

>> bash scripts/dialogue.sh  # for roberta-base
Owner
ZJUNLP
NLP Group of Knowledge Engine Lab at Zhejiang University
ZJUNLP
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
(EI 2022) Controllable Confidence-Based Image Denoising

Image Denoising with Control over Deep Network Hallucination Paper and arXiv preprint -- Our frequency-domain insights derive from SFM and the concept

Images and Visual Representation Laboratory (IVRL) at EPFL 5 Dec 18, 2022
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022