The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

Related tags

Deep LearningEMANet
Overview

EMANet

News

  • The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again.
  • EMANet-101 gets 80.99 on the PASCAL VOC dataset (Thanks for Sensetimes' server). So, with a classic backbone(ResNet) instead of some newest ones(WideResNet, HRNet), EMANet still achieves the top performance.
  • EMANet-101 (OHEM) gets 81.14 in mIoU on Cityscapes val using single-scale inference, and 81.9 on test server with multi-scale inference.

Background

This repository is for Expectation-Maximization Attention Networks for Semantic Segmentation (to appear in ICCV 2019, Oral presentation),

by Xia Li, Zhisheng Zhong, Jianlong Wu, Yibo Yang, Zhouchen Lin and Hong Liu from Peking University.

The source code is now available!

citation

If you find EMANet useful in your research, please consider citing:

@inproceedings{li19,
    author={Xia Li and Zhisheng Zhong and Jianlong Wu and Yibo Yang and Zhouchen Lin and Hong Liu},
    title={Expectation-Maximization Attention Networks for Semantic Segmentation},
    booktitle={International Conference on Computer Vision},   
    year={2019},   
}

table of contents

Introduction

Self-attention mechanism has been widely used for various tasks. It is designed to compute the representation of each position by a weighted sum of the features at all positions. Thus, it can capture long-range relations for computer vision tasks. However, it is computationally consuming. Since the attention maps are computed w.r.t all other positions. In this paper, we formulate the attention mechanism into an expectation-maximization manner and iteratively estimate a much more compact set of bases upon which the attention maps are computed. By a weighted summation upon these bases, the resulting representation is low-rank and deprecates noisy information from the input. The proposed Expectation-Maximization Attention (EMA) module is robust to the variance of input and is also friendly in memory and computation. Moreover, we set up the bases maintenance and normalization methods to stabilize its training procedure. We conduct extensive experiments on popular semantic segmentation benchmarks including PASCAL VOC, PASCAL Context, and COCO Stuff, on which we set new records. EMA Unit

Design

As so many peers have starred at this repo, I feel the great pressure, and try to release the code with high quality. That's why I didn't release it until today (Aug, 22, 2018). It's known that the design of the code structure is not an easy thing. Different designs are suitable for different usage. Here, I aim at making research on Semantic Segmentation, especially on PASCAL VOC, more easier. So, I delete necessary encapsulation as much as possible, and leave over less than 10 python files. To be honest, the global variables in settings are not a good design for large project. But for research, it offers great flexibility. So, hope you can understand that

For research, I recommand seperatting each experiment with a folder. Each folder contains the whole project, and should be named as the experiment settings, such as 'EMANet101.moving_avg.l2norm.3stages'. Through this, you can keep tracks of all the experiments, and find their differences just by the 'diff' command.

Usage

  1. Install the libraries listed in the 'requirements.txt'
  2. Downloads images and labels of PASCAL VOC and SBD, decompress them together.
  3. Downloads the pretrained ResNet50 and ResNet101, unzip them, and put into the 'models' folder.
  4. Change the 'DATA_ROOT' in settings.py to where you place the dataset.
  5. Run sh clean.sh to clear the models and logs from the last experiment.
  6. Run python train.py for training and sh tensorboard.sh for visualization on your browser.
  7. Or you can download the pretraind model, put into the 'models' folder, and skip step 6.
  8. Run python eval.py for validation

Ablation Studies

The following results are referred from the paper. For this repo, it's not strange to get even higer performance. If so, I'd like you share it in the issue. By now, this repo only provides the SS inference. I may release the code for MS and Flip latter.

Tab 1. Detailed comparisons with Deeplabs. All results are achieved with the backbone ResNet-101 and output stride 8. The FLOPs and memory are computed with the input size 513×513. SS: Single scale input during test. MS: Multi-scale input. Flip: Adding left-right flipped input. EMANet (256) and EMANet (512) represent EMANet withthe number of input channels for EMA as 256 and 512, respectively.

Method SS MS+Flip FLOPs Memory Params
ResNet-101 - - 190.6G 2.603G 42.6M
DeeplabV3 78.51 79.77 +63.4G +66.0M +15.5M
DeeplabV3+ 79.35 80.57 +84.1G +99.3M +16.3M
PSANet 78.51 79.77 +56.3G +59.4M +18.5M
EMANet(256) 79.73 80.94 +21.1G +12.3M +4.87M
EMANet(512) 80.05 81.32 +43.1G +22.1M +10.0M

To be note, the majority overheads of EMANets come from the 3x3 convs before and after the EMA Module. As for the EMA Module itself, its computation is only 1/3 of a 3x3 conv's, and its parameter number is even smaller than a 1x1 conv.

Comparisons with SOTAs

Note that, for validation on the 'val' set, you just have to train 30k on the 'trainaug' set. But for test on the evaluation server, you should first pretrain on COCO, and then 30k on 'trainaug', and another 30k on the 'trainval' set.

Tab 2. Comparisons on the PASCAL VOC test dataset.

Method Backbone mIoU(%)
GCN ResNet-152 83.6
RefineNet ResNet-152 84.2
Wide ResNet WideResNet-38 84.9
PSPNet ResNet-101 85.4
DeeplabV3 ResNet-101 85.7
PSANet ResNet-101 85.7
EncNet ResNet-101 85.9
DFN ResNet-101 86.2
Exfuse ResNet-101 86.2
IDW-CNN ResNet-101 86.3
SDN DenseNet-161 86.6
DIS ResNet-101 86.8
EMANet101 ResNet-101 87.7
DeeplabV3+ Xception-65 87.8
Exfuse ResNeXt-131 87.9
MSCI ResNet-152 88.0
EMANet152 ResNet-152 88.2

Code Borrowed From

RESCAN

Pytorch-Encoding

Synchronized-BN

The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs Check out the paper on arXiv: https://arxiv.org/abs/2103.13744 This repo cont

Christian Reiser 373 Dec 20, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
This library is a location of the LegacyLogger for PyTorch Lightning.

neptune-contrib Documentation See neptune-contrib documentation site Installation Get prerequisites python versions 3.5.6/3.6 are supported Install li

neptune.ai 26 Oct 07, 2021
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022