A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

Overview

Academic-DeepNeuralNetsFromScratch

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

This project was constructed for the Introduction to Machine Learning course, class 605.649 section 84 at Johns Hopkins University. FranceLab4 is a machine learning toolkit that implements several algorithms for classification and regression tasks. Specifically, the toolkit coordinates a linear network, a logistic regressor, an autoencoder, and a neural network that implements backpropagation; it also leverages data structures built in the preceding labs. FranceLab4 is a software module written in Python 3.7 that facilitates such algorithms.

##Notes for Graders All files of concern for this project (with the exception of main.py) may be found in the Linear_Network, Logistic_Regression, and Neural_Network folders. I kept most of my files from Projects 1, 2, and 3 because I ended up using cross validation, encoding, and other helper methods. However, these three folders contains the neural network algorithms of interest.

I have created blocks of code for you to test and run each algorithm if you choose to do so. In __main__.py scroll to the bottom and find the main function. Simply comment or uncomment blocks of code to test if desired.

Each neural network and autoencoder constructed are sub-classed / inherited from the NeuralNet class in neural_net.py. I simply initialize the class differently in order to construct an autoencoder, a feed-forward neural network, or a combination of both.

Data produced in my paper were run with KFCV. However within the main program, you may notice that the number of folds k has been reduced to 2 to make the analysis quicker and the console output easier to follow.

The construction of a linear network begins on line 84 in __main__.py.

The construction of a logistic regressor begins on line 102 in __main__.py.

The construction of an autoencoder only begins on line 128 in __main__.py.

The construction of a feed-forward neural network only begins on line 141 in __main__.py.

The construction of an autoencoder that is trained, the decoder removed, and the encoder attached to a new hidden layer with a prediction layer attached to form a new neural network begins on line 221 in __main__.py.

The code for the weight updates and backward and forward propagation may be found in the following files within the Neural_Network folder:

  • layer.py
  • optimizer_function.py
  • neural_net.py

__main__.py is the driver behind importing the dataset, cleaning the data, coordinating KFCV, and initializing each of the neural network algorithms.

Running FranceLab4

  1. Ensure Python 3.7 is installed on your computer.
  2. Navigate to the Lab4 directory. For example, cd User\Documents\PythonProjects\FranceLab4. Do NOT cd into the Lab4 module.
  3. Run the program as a module: python3 -m Lab4.
  4. Input and output files ar located in the io_files subdirectory.

FranceLab4 Usage

usage: python3 -m Lab4
Owner
Kordel K. France
Artificial Intelligence Engineer, Algorithmic Trader. I build software that finds order within chaos.
Kordel K. France
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022