The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Overview

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021)

Project Page | Paper

Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai

GOF can synthesize high-quality images with high 3D consistency and simultaneously learn compact and smooth object surfaces.

Requirements

  • Python 3.8 is used. Basic requirements are listed in the requirements.txt
pip install -r requirements.txt 

Training

We have put several bash files of BFM, CelebA, and Cats datasets in auto_bash for reference. The adopted hyperparameters in our paper has been listed in the curriculums.py file.

If you want to train with your own dataset, you should set the hyperparameters carefully, especially those related to the camera pose distribution. Just as the settings in the curriculums.py file, you can leverage some camera pose predictors to obtain the rough 'h_stddev' and 'v_stddev', and tune them according to the corresponding performance. Besides, you should add the dataset class in dataset.py and modify the reference bash file to fit your own dataset accordingly.

Evaluation

Evaluation Metrics

To calculate FID/IS/KID scores, please run

python eval_metrics.py path/to/generator.pth --real_image_dir path/to/real_images --curriculum CURRICULUM

To calculate weighted variance proposed in the paper, please run

python cal_weighted_var.py path/to/generator.pth --curriculum CURRICULUM

Render Multi-view Images

python render_multiview_images.py path/to/generator.pth --curriculum CURRICULUM --seeds_start 0 --seeds_end 100

Render Videos

python render_video.py path/to/generator.pth --curriculum CURRICULUM --seed 0

After running, you will obtain a series of images in a specific folder. And then you can transfer them into a video with ffmpeg:

ffmpeg -r 15 -f image2 -i xxx.png -c:v libx264 -crf 25 -pix_fmt yuv420p xxx.mp4

Similarly, you can render videos interpolating bettween given latent codes/seeds following:

python render_video_interpolation.py path/to/generator.pth --curriculum CURRICULUM --seeds 0 1 2 3

Extract 3D Shapes

You should first generate a voxel npy file by running:

python extract_shapes.py path/to/generator.pth --curriculum CURRICULUM --seed 0

and render it to the corresponding multi-view images with the render_meshimg.py script.

Pretrained Models

We provide pretrained models for BFM, CelebA, and Cats. Please refer to this link.

As mentioned in the supplementary, the training of all models starts from an early (about 2K iterations) pretrained model with the correct outward-facing faces. We also provide the early pretrained models for three datasets in this link. If you want to start from the early pretrained models, you can replace the 'load_dir' name in bash files in auto_bash with the corresponding path of these pretrained models. Since the optimizer parameters are not provided here, you may need to comment L138~139 out.

Citation

If you find this codebase useful for your research, please cite:

@inproceedings{xu2021generative,
  title={Generative Occupancy Fields for 3D Surface-Aware Image Synthesis},
  author={Xu, Xudong and Pan, Xingang and Lin, Dahua and Dai, Bo},
  booktitle={Advances in Neural Information Processing Systems(NeurIPS)},
  year={2021}
}

Acknowledgement

The structure of this codebase is borrowed from pi-GAN.

Owner
xuxudong
Deep learning, deep research. CUHK MMLAB PhD
xuxudong
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

GeNER This repository provides the official code for GeNER (an automated dataset Generation framework for NER). Overview of GeNER GeNER allows you to

DMIS Laboratory - Korea University 50 Nov 30, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023