Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Overview

Segformer - Pytorch

Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch.

Install

$ pip install segformer-pytorch

Usage

For example, MiT-B0

import torch
from segformer_pytorch import Segformer

model = Segformer(
    patch_size = 4,                 # patch size
    dims = (32, 64, 160, 256),      # dimensions of each stage
    heads = (1, 2, 5, 8),           # heads of each stage
    ff_expansion = (8, 8, 4, 4),    # feedforward expansion factor of each stage
    reduction_ratio = (8, 4, 2, 1), # reduction ratio of each stage for efficient attention
    num_layers = 2,                 # num layers of each stage
    decoder_dim = 256,              # decoder dimension
    num_classes = 4                 # number of segmentation classes
)

x = torch.randn(1, 3, 256, 256)
pred = model(x) # (1, 4, 64, 64)  # output is (H/4, W/4) map of the number of segmentation classes

Make sure the keywords are at most a tuple of 4, as this repository is hard-coded to give the MiT 4 stages as done in the paper.

Citations

@misc{xie2021segformer,
    title   = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, 
    author  = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo},
    year    = {2021},
    eprint  = {2105.15203},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
You might also like...
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

MLP-Like Vision Permutator for Visual Recognition (PyTorch)
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Pytorch implementation of
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Unofficial Implementation of MLP-Mixer in TensorFlow
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Implementation of
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Unofficial Implementation of MLP-Mixer, Image Classification Model
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Comments
  • Something is wrong with your implementation.

    Something is wrong with your implementation.

    Hello!

    First of all, I really like the repo. The implementation is clean and so much easier to understand than the official repo. But after doing some digging, I realized that the number of parameters and layers (especially conv2d) is quite different from the official implementation. This is the case for all variants I have tested (B0 and B5).

    Check out the README in my repo here, and you'll see what I mean. I also included images of the execution graphs of the two different implementations in the 'src' folder, which could help to debug.

    I don't quite have time to dig into the source of the problem, but I just thought I'd share my observations with you.

    opened by camlaedtke 0
  • Models weights + model output HxW

    Models weights + model output HxW

    Hi,

    Could you please add the models weights so we can start training from them?

    Also, why you choose to train models with an output of size (H/4,W/4) and not the original (HxW) size?

    Great job for the paper, very interesting :)

    opened by isega24 2
  • The model configurations for all the SegFormer B0 ~ B5

    The model configurations for all the SegFormer B0 ~ B5

    Hello How are you? Thanks for contributing to this project. Is the model configuration in README MiT-B0 correctly? That's because the total number of params for the model is 36M. Could u provide all the model configurations for SegFormer B0 ~ B5?

    opened by rose-jinyang 5
  • a question about kv reshape in Efficient Self-Attention

    a question about kv reshape in Efficient Self-Attention

    Thanks for sharing your work, your code is so elegant, and inspired me a lot. Here is a question about the implementation of Efficient Self-Attention

    It seems you use a "mean op" to reshape k,v. and the official implementation uses a (learnable) linear mapping to reshape k,v

    may I ask, whether this difference significantly matters in your experiment ?

    in your code:

    k, v = map(lambda t: reduce(t, 'b c (h r1) (w r2) -> b c h w', 'mean', r1 = r, r2 = r), (k, v))
    

    the original implementation uses:

    self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
    self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
    self.norm = nn.LayerNorm(dim)
    
    x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
    x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
    x_ = self.norm(x_)
    kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
    k, v = kv[0], kv[1]
    
    opened by masszhou 1
Releases(0.0.6)
Owner
Phil Wang
Working with Attention
Phil Wang
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022