Implementation of "A MLP-like Architecture for Dense Prediction"

Related tags

Deep LearningCycleMLP
Overview

A MLP-like Architecture for Dense Prediction (arXiv)

License: MIT Python 3.8

    

Updates

  • (22/07/2021) Initial release.

Model Zoo

We provide CycleMLP models pretrained on ImageNet 2012.

Model Parameters FLOPs Top 1 Acc. Download
CycleMLP-B1 15M 2.1G 78.9% model
CycleMLP-B2 27M 3.9G 81.6% model
CycleMLP-B3 38M 6.9G 82.4% model
CycleMLP-B4 52M 10.1G 83.0% model
CycleMLP-B5 76M 12.3G 83.2% model

Usage

Install

  • PyTorch 1.7.0+ and torchvision 0.8.1+
  • timm:
pip install 'git+https://github.com/rwightman/[email protected]'

or

git clone https://github.com/rwightman/pytorch-image-models
cd pytorch-image-models
git checkout c2ba229d995c33aaaf20e00a5686b4dc857044be
pip install -e .
  • fvcore (optional, for FLOPs calculation)
  • mmcv, mmdetection, mmsegmentation (optional)

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is:

│path/to/imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Evaluation

To evaluate a pre-trained CycleMLP-B5 on ImageNet val with a single GPU run:

python main.py --eval --model CycleMLP_B5 --resume path/to/CycleMLP_B5.pth --data-path /path/to/imagenet

Training

To train CycleMLP-B5 on ImageNet on a single node with 8 gpus for 300 epochs run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model CycleMLP_B5 --batch-size 128 --data-path /path/to/imagenet --output_dir /path/to/save

Acknowledgement

This code is based on DeiT and pytorch-image-models. Thanks for their wonderful works

Citing

@article{chen2021cyclemlp,
  title={CycleMLP: A MLP-like Architecture for Dense Prediction},
  author={Chen, Shoufa and Xie, Enze and Ge, Chongjian and Liang, Ding and Luo, Ping},
  journal={arXiv preprint arXiv:2107.10224},
  year={2021}
}

License

CycleMLP is released under MIT License.

Comments
  • detection result

    detection result

    Applying PVT detection framework, I tried a CycleMLP-B1 based detector with RetinaNet 1x. I got AP=27.1, fairly inferior to the reported 38.6. Could you give some advices to reproduce the reported result?

    The specific configure is as follows

    base = [ 'base/models/retinanet_r50_fpn.py', 'base/datasets/coco_detection.py', 'base/schedules/schedule_1x.py', 'base/default_runtime.py' ] #optimizer model = dict( pretrained='./pretrained/CycleMLP_B1.pth', backbone=dict( type='CycleMLP_B1_feat', style='pytorch'), neck=dict( type='FPN', in_channels=[64, 128, 320, 512], out_channels=256, start_level=1, add_extra_convs='on_input', num_outs=5)) #optimizer optimizer = dict(delete=True, type='AdamW', lr=0.0001, weight_decay=0.0001) optimizer_config = dict(grad_clip=None)

    find_unused_parameters = True

    opened by mountain111 6
  • Compiling CycleMLP

    Compiling CycleMLP

    Thank you for this great repo and interesting paper.

    I tried compiling CycleMLP to onnx and not surpassingly the process failed since CycleMLP include dynamic offset creation in https://github.com/ShoufaChen/CycleMLP/blob/main/cycle_mlp.py#L132 and as such cannot be converted to a frozen graph. Were you able to convert CycleMLP to onnx or any other frozen graph framework?

    Thanks in advance.

    opened by shairoz-deci 6
  • Questions about offset calculation

    Questions about offset calculation

    Hi, thanks for your wonderful work.

    I'm currently studying your work, and come up with some question about the offset calculations.

    I understood the offset calculation mentioned on the paper, but can't understand about how generated offset is being used in the code.

    For ex) if $S_H \times S_W : 3 \times 1$; I understood how the offset is applied in this figure 스크린샷 2022-06-13 오후 9 18 20

    by calculate like this: 스크린샷 2022-06-13 오후 9 19 57

    However, when I run the offset generating code, I can't figure out how this offset is being used in deform_conv2d 스크린샷 2022-06-13 오후 9 21 57

    Can you provide more detailed information about this??

    And also, the paper contains how $S_H \times S_W: 3 \times 3$ works, but in the code, it seems like either one ofkernel_size[0] or kernel_size[1] has to be 1. So, if I want to use $S_H \times S_W : 3 \times 3$, do I have to make $3 \times 1$ and $1 \times 3$ offsets and add those together?

    Thank you again for your work. I really learned a lot.

    opened by tae-mo 5
  • Example of CycleMLP Configuration for Dense Prediction

    Example of CycleMLP Configuration for Dense Prediction

    Hello.

    First of all, thank you for curating this interesting work. I was wondering, are there any working examples of how I can use CycleMLP for dense prediction while maintaining the original input size (e.g., predict a 0 or 1 value for each pixel in an input image)? In addition, I am interested in only a single ("annotated") output image, although I noticed the model definitions given in this repository output multiple downsampled versions of the original input image. Any thoughts on this?

    Thank you in advance for your time.

    opened by amorehead 2
  • Swin-B vs CycleMLP-B on image classification

    Swin-B vs CycleMLP-B on image classification

    For classificaion on ImageNet-1k, the acuracy of Swin-B is 83.5, which is 0.1 higher than the proposed CycleMLP-B. But, in this paper, the authors reprot that the accuracy of Swin-B is 83.3, which is 0.1 lower than the proposed CycleMLP-B. Why are these accuracies different?

    opened by hkzhang91 1
  • question about the offset

    question about the offset

    Thanks for your work!

    The implementation of this code inspired me. But the calculation of offset here is confusing. Although this issue (https://github.com/ShoufaChen/CycleMLP/issues/10) has asked similar questions, I haven't found a reasonable explanation.

    https://github.com/ShoufaChen/CycleMLP/blob/2f76a1f6e3cc6672143fdac46e3db5f9a7341253/cycle_mlp.py#L127-L136

    kernel_size = (1, 3)
    start_idx = (kernel_size[0] * kernel_size[1]) // 2
    for i in range(num_channels):
        offset[0, 2 * i + 0, 0, 0] = 0
        # relative offset
        offset[0, 2 * i + 1, 0, 0] = (i + start_idx) % kernel_size[1] - (kernel_size[1] // 2)
    offset.reshape(num_channels, 2)
    
    tensor([[ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.],
            [ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.]])
    

    the results are different with the figure in paper:

    image

    Some codes for verification:

    import torch
    from torchvision.ops import deform_conv2d
    
    num_channels = 6
    
    data = torch.arange(1, 6).reshape(1, 1, 1, 5).expand(-1, num_channels, -1, -1)
    data
    """
    tensor([[[[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]]]])
    """
    
    weight = torch.eye(num_channels).reshape(num_channels, num_channels, 1, 1)
    weight.reshape(num_channels, num_channels)
    """
    tensor([[1., 0., 0., 0., 0., 0.],
            [0., 1., 0., 0., 0., 0.],
            [0., 0., 1., 0., 0., 0.],
            [0., 0., 0., 1., 0., 0.],
            [0., 0., 0., 0., 1., 0.],
            [0., 0., 0., 0., 0., 1.]])
    """
    
    offset = torch.empty(1, 2 * num_channels * 1 * 1, 1, 1)
    kernel_size = (1, 3)
    start_idx = (kernel_size[0] * kernel_size[1]) // 2
    for i in range(num_channels):
        offset[0, 2 * i + 0, 0, 0] = 0
        # relative offset
        offset[0, 2 * i + 1, 0, 0] = (
            (i + start_idx) % kernel_size[1] - (kernel_size[1] // 2)
        )
    offset.reshape(num_channels, 2)
    """
    tensor([[ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.],
            [ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.]])
    """
    
    deform_conv2d(
        data.float(), 
        offset=offset.expand(-1, -1, -1, 5).float(), 
        weight=weight.float(), 
        bias=None,
    )
    """
    tensor([[[[1., 2., 3., 4., 5.]],
             [[2., 3., 4., 5., 0.]],
             [[0., 1., 2., 3., 4.]],
             [[1., 2., 3., 4., 5.]],
             [[2., 3., 4., 5., 0.]],
             [[0., 1., 2., 3., 4.]]]])
    """
    
    opened by lartpang 1
  • question about the offset

    question about the offset

    Hi, thank you very much for your excellent work. In Fig.4 of your paper, you show the pseudo-kernel when kernel size is 1x3. But I when I find that function "gen_offset" does not generate the same offset as Fig.4. The offset it generates is "0,1,0,-1,0,0,0,1..." instead of "0,1,0,-1,0,1,0,-1', which is shown in Fig.4. So could you please tell me the reason? image image

    opened by linjing7 1
  • About

    About "crop_pct"

    Hi, thanks for your great work and code. I wonder the parameter crop_pct actually works in which part of code. When I go throught the timm, I can't find out how this crop_pct is loaded.

    opened by ggjy 1
  • How to deploy CycleMLP-T for training?

    How to deploy CycleMLP-T for training?

    Thank you very much for such a wonderful work!

    After learning the cycle_mlp source code in the repository, I am very confused to deploy CycleMLP Block based on Swin Transformer. Is it convenient for you to release swin-based CycleMLP? Looking forward to your reply, Thanks!

    opened by Pak287 0
Owner
Shoufa Chen
Shoufa Chen
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022