Implementation of "A MLP-like Architecture for Dense Prediction"

Related tags

Deep LearningCycleMLP
Overview

A MLP-like Architecture for Dense Prediction (arXiv)

License: MIT Python 3.8

    

Updates

  • (22/07/2021) Initial release.

Model Zoo

We provide CycleMLP models pretrained on ImageNet 2012.

Model Parameters FLOPs Top 1 Acc. Download
CycleMLP-B1 15M 2.1G 78.9% model
CycleMLP-B2 27M 3.9G 81.6% model
CycleMLP-B3 38M 6.9G 82.4% model
CycleMLP-B4 52M 10.1G 83.0% model
CycleMLP-B5 76M 12.3G 83.2% model

Usage

Install

  • PyTorch 1.7.0+ and torchvision 0.8.1+
  • timm:
pip install 'git+https://github.com/rwightman/[email protected]'

or

git clone https://github.com/rwightman/pytorch-image-models
cd pytorch-image-models
git checkout c2ba229d995c33aaaf20e00a5686b4dc857044be
pip install -e .
  • fvcore (optional, for FLOPs calculation)
  • mmcv, mmdetection, mmsegmentation (optional)

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is:

│path/to/imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Evaluation

To evaluate a pre-trained CycleMLP-B5 on ImageNet val with a single GPU run:

python main.py --eval --model CycleMLP_B5 --resume path/to/CycleMLP_B5.pth --data-path /path/to/imagenet

Training

To train CycleMLP-B5 on ImageNet on a single node with 8 gpus for 300 epochs run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model CycleMLP_B5 --batch-size 128 --data-path /path/to/imagenet --output_dir /path/to/save

Acknowledgement

This code is based on DeiT and pytorch-image-models. Thanks for their wonderful works

Citing

@article{chen2021cyclemlp,
  title={CycleMLP: A MLP-like Architecture for Dense Prediction},
  author={Chen, Shoufa and Xie, Enze and Ge, Chongjian and Liang, Ding and Luo, Ping},
  journal={arXiv preprint arXiv:2107.10224},
  year={2021}
}

License

CycleMLP is released under MIT License.

Comments
  • detection result

    detection result

    Applying PVT detection framework, I tried a CycleMLP-B1 based detector with RetinaNet 1x. I got AP=27.1, fairly inferior to the reported 38.6. Could you give some advices to reproduce the reported result?

    The specific configure is as follows

    base = [ 'base/models/retinanet_r50_fpn.py', 'base/datasets/coco_detection.py', 'base/schedules/schedule_1x.py', 'base/default_runtime.py' ] #optimizer model = dict( pretrained='./pretrained/CycleMLP_B1.pth', backbone=dict( type='CycleMLP_B1_feat', style='pytorch'), neck=dict( type='FPN', in_channels=[64, 128, 320, 512], out_channels=256, start_level=1, add_extra_convs='on_input', num_outs=5)) #optimizer optimizer = dict(delete=True, type='AdamW', lr=0.0001, weight_decay=0.0001) optimizer_config = dict(grad_clip=None)

    find_unused_parameters = True

    opened by mountain111 6
  • Compiling CycleMLP

    Compiling CycleMLP

    Thank you for this great repo and interesting paper.

    I tried compiling CycleMLP to onnx and not surpassingly the process failed since CycleMLP include dynamic offset creation in https://github.com/ShoufaChen/CycleMLP/blob/main/cycle_mlp.py#L132 and as such cannot be converted to a frozen graph. Were you able to convert CycleMLP to onnx or any other frozen graph framework?

    Thanks in advance.

    opened by shairoz-deci 6
  • Questions about offset calculation

    Questions about offset calculation

    Hi, thanks for your wonderful work.

    I'm currently studying your work, and come up with some question about the offset calculations.

    I understood the offset calculation mentioned on the paper, but can't understand about how generated offset is being used in the code.

    For ex) if $S_H \times S_W : 3 \times 1$; I understood how the offset is applied in this figure 스크린샷 2022-06-13 오후 9 18 20

    by calculate like this: 스크린샷 2022-06-13 오후 9 19 57

    However, when I run the offset generating code, I can't figure out how this offset is being used in deform_conv2d 스크린샷 2022-06-13 오후 9 21 57

    Can you provide more detailed information about this??

    And also, the paper contains how $S_H \times S_W: 3 \times 3$ works, but in the code, it seems like either one ofkernel_size[0] or kernel_size[1] has to be 1. So, if I want to use $S_H \times S_W : 3 \times 3$, do I have to make $3 \times 1$ and $1 \times 3$ offsets and add those together?

    Thank you again for your work. I really learned a lot.

    opened by tae-mo 5
  • Example of CycleMLP Configuration for Dense Prediction

    Example of CycleMLP Configuration for Dense Prediction

    Hello.

    First of all, thank you for curating this interesting work. I was wondering, are there any working examples of how I can use CycleMLP for dense prediction while maintaining the original input size (e.g., predict a 0 or 1 value for each pixel in an input image)? In addition, I am interested in only a single ("annotated") output image, although I noticed the model definitions given in this repository output multiple downsampled versions of the original input image. Any thoughts on this?

    Thank you in advance for your time.

    opened by amorehead 2
  • Swin-B vs CycleMLP-B on image classification

    Swin-B vs CycleMLP-B on image classification

    For classificaion on ImageNet-1k, the acuracy of Swin-B is 83.5, which is 0.1 higher than the proposed CycleMLP-B. But, in this paper, the authors reprot that the accuracy of Swin-B is 83.3, which is 0.1 lower than the proposed CycleMLP-B. Why are these accuracies different?

    opened by hkzhang91 1
  • question about the offset

    question about the offset

    Thanks for your work!

    The implementation of this code inspired me. But the calculation of offset here is confusing. Although this issue (https://github.com/ShoufaChen/CycleMLP/issues/10) has asked similar questions, I haven't found a reasonable explanation.

    https://github.com/ShoufaChen/CycleMLP/blob/2f76a1f6e3cc6672143fdac46e3db5f9a7341253/cycle_mlp.py#L127-L136

    kernel_size = (1, 3)
    start_idx = (kernel_size[0] * kernel_size[1]) // 2
    for i in range(num_channels):
        offset[0, 2 * i + 0, 0, 0] = 0
        # relative offset
        offset[0, 2 * i + 1, 0, 0] = (i + start_idx) % kernel_size[1] - (kernel_size[1] // 2)
    offset.reshape(num_channels, 2)
    
    tensor([[ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.],
            [ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.]])
    

    the results are different with the figure in paper:

    image

    Some codes for verification:

    import torch
    from torchvision.ops import deform_conv2d
    
    num_channels = 6
    
    data = torch.arange(1, 6).reshape(1, 1, 1, 5).expand(-1, num_channels, -1, -1)
    data
    """
    tensor([[[[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]]]])
    """
    
    weight = torch.eye(num_channels).reshape(num_channels, num_channels, 1, 1)
    weight.reshape(num_channels, num_channels)
    """
    tensor([[1., 0., 0., 0., 0., 0.],
            [0., 1., 0., 0., 0., 0.],
            [0., 0., 1., 0., 0., 0.],
            [0., 0., 0., 1., 0., 0.],
            [0., 0., 0., 0., 1., 0.],
            [0., 0., 0., 0., 0., 1.]])
    """
    
    offset = torch.empty(1, 2 * num_channels * 1 * 1, 1, 1)
    kernel_size = (1, 3)
    start_idx = (kernel_size[0] * kernel_size[1]) // 2
    for i in range(num_channels):
        offset[0, 2 * i + 0, 0, 0] = 0
        # relative offset
        offset[0, 2 * i + 1, 0, 0] = (
            (i + start_idx) % kernel_size[1] - (kernel_size[1] // 2)
        )
    offset.reshape(num_channels, 2)
    """
    tensor([[ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.],
            [ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.]])
    """
    
    deform_conv2d(
        data.float(), 
        offset=offset.expand(-1, -1, -1, 5).float(), 
        weight=weight.float(), 
        bias=None,
    )
    """
    tensor([[[[1., 2., 3., 4., 5.]],
             [[2., 3., 4., 5., 0.]],
             [[0., 1., 2., 3., 4.]],
             [[1., 2., 3., 4., 5.]],
             [[2., 3., 4., 5., 0.]],
             [[0., 1., 2., 3., 4.]]]])
    """
    
    opened by lartpang 1
  • question about the offset

    question about the offset

    Hi, thank you very much for your excellent work. In Fig.4 of your paper, you show the pseudo-kernel when kernel size is 1x3. But I when I find that function "gen_offset" does not generate the same offset as Fig.4. The offset it generates is "0,1,0,-1,0,0,0,1..." instead of "0,1,0,-1,0,1,0,-1', which is shown in Fig.4. So could you please tell me the reason? image image

    opened by linjing7 1
  • About

    About "crop_pct"

    Hi, thanks for your great work and code. I wonder the parameter crop_pct actually works in which part of code. When I go throught the timm, I can't find out how this crop_pct is loaded.

    opened by ggjy 1
  • How to deploy CycleMLP-T for training?

    How to deploy CycleMLP-T for training?

    Thank you very much for such a wonderful work!

    After learning the cycle_mlp source code in the repository, I am very confused to deploy CycleMLP Block based on Swin Transformer. Is it convenient for you to release swin-based CycleMLP? Looking forward to your reply, Thanks!

    opened by Pak287 0
Owner
Shoufa Chen
Shoufa Chen
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
Scene-Text-Detection-and-Recognition (Pytorch)

Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t

Gi-Luen Huang 9 Jan 02, 2023
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022