Implementation of "A MLP-like Architecture for Dense Prediction"

Related tags

Deep LearningCycleMLP
Overview

A MLP-like Architecture for Dense Prediction (arXiv)

License: MIT Python 3.8

    

Updates

  • (22/07/2021) Initial release.

Model Zoo

We provide CycleMLP models pretrained on ImageNet 2012.

Model Parameters FLOPs Top 1 Acc. Download
CycleMLP-B1 15M 2.1G 78.9% model
CycleMLP-B2 27M 3.9G 81.6% model
CycleMLP-B3 38M 6.9G 82.4% model
CycleMLP-B4 52M 10.1G 83.0% model
CycleMLP-B5 76M 12.3G 83.2% model

Usage

Install

  • PyTorch 1.7.0+ and torchvision 0.8.1+
  • timm:
pip install 'git+https://github.com/rwightman/[email protected]'

or

git clone https://github.com/rwightman/pytorch-image-models
cd pytorch-image-models
git checkout c2ba229d995c33aaaf20e00a5686b4dc857044be
pip install -e .
  • fvcore (optional, for FLOPs calculation)
  • mmcv, mmdetection, mmsegmentation (optional)

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is:

│path/to/imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Evaluation

To evaluate a pre-trained CycleMLP-B5 on ImageNet val with a single GPU run:

python main.py --eval --model CycleMLP_B5 --resume path/to/CycleMLP_B5.pth --data-path /path/to/imagenet

Training

To train CycleMLP-B5 on ImageNet on a single node with 8 gpus for 300 epochs run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model CycleMLP_B5 --batch-size 128 --data-path /path/to/imagenet --output_dir /path/to/save

Acknowledgement

This code is based on DeiT and pytorch-image-models. Thanks for their wonderful works

Citing

@article{chen2021cyclemlp,
  title={CycleMLP: A MLP-like Architecture for Dense Prediction},
  author={Chen, Shoufa and Xie, Enze and Ge, Chongjian and Liang, Ding and Luo, Ping},
  journal={arXiv preprint arXiv:2107.10224},
  year={2021}
}

License

CycleMLP is released under MIT License.

Comments
  • detection result

    detection result

    Applying PVT detection framework, I tried a CycleMLP-B1 based detector with RetinaNet 1x. I got AP=27.1, fairly inferior to the reported 38.6. Could you give some advices to reproduce the reported result?

    The specific configure is as follows

    base = [ 'base/models/retinanet_r50_fpn.py', 'base/datasets/coco_detection.py', 'base/schedules/schedule_1x.py', 'base/default_runtime.py' ] #optimizer model = dict( pretrained='./pretrained/CycleMLP_B1.pth', backbone=dict( type='CycleMLP_B1_feat', style='pytorch'), neck=dict( type='FPN', in_channels=[64, 128, 320, 512], out_channels=256, start_level=1, add_extra_convs='on_input', num_outs=5)) #optimizer optimizer = dict(delete=True, type='AdamW', lr=0.0001, weight_decay=0.0001) optimizer_config = dict(grad_clip=None)

    find_unused_parameters = True

    opened by mountain111 6
  • Compiling CycleMLP

    Compiling CycleMLP

    Thank you for this great repo and interesting paper.

    I tried compiling CycleMLP to onnx and not surpassingly the process failed since CycleMLP include dynamic offset creation in https://github.com/ShoufaChen/CycleMLP/blob/main/cycle_mlp.py#L132 and as such cannot be converted to a frozen graph. Were you able to convert CycleMLP to onnx or any other frozen graph framework?

    Thanks in advance.

    opened by shairoz-deci 6
  • Questions about offset calculation

    Questions about offset calculation

    Hi, thanks for your wonderful work.

    I'm currently studying your work, and come up with some question about the offset calculations.

    I understood the offset calculation mentioned on the paper, but can't understand about how generated offset is being used in the code.

    For ex) if $S_H \times S_W : 3 \times 1$; I understood how the offset is applied in this figure 스크린샷 2022-06-13 오후 9 18 20

    by calculate like this: 스크린샷 2022-06-13 오후 9 19 57

    However, when I run the offset generating code, I can't figure out how this offset is being used in deform_conv2d 스크린샷 2022-06-13 오후 9 21 57

    Can you provide more detailed information about this??

    And also, the paper contains how $S_H \times S_W: 3 \times 3$ works, but in the code, it seems like either one ofkernel_size[0] or kernel_size[1] has to be 1. So, if I want to use $S_H \times S_W : 3 \times 3$, do I have to make $3 \times 1$ and $1 \times 3$ offsets and add those together?

    Thank you again for your work. I really learned a lot.

    opened by tae-mo 5
  • Example of CycleMLP Configuration for Dense Prediction

    Example of CycleMLP Configuration for Dense Prediction

    Hello.

    First of all, thank you for curating this interesting work. I was wondering, are there any working examples of how I can use CycleMLP for dense prediction while maintaining the original input size (e.g., predict a 0 or 1 value for each pixel in an input image)? In addition, I am interested in only a single ("annotated") output image, although I noticed the model definitions given in this repository output multiple downsampled versions of the original input image. Any thoughts on this?

    Thank you in advance for your time.

    opened by amorehead 2
  • Swin-B vs CycleMLP-B on image classification

    Swin-B vs CycleMLP-B on image classification

    For classificaion on ImageNet-1k, the acuracy of Swin-B is 83.5, which is 0.1 higher than the proposed CycleMLP-B. But, in this paper, the authors reprot that the accuracy of Swin-B is 83.3, which is 0.1 lower than the proposed CycleMLP-B. Why are these accuracies different?

    opened by hkzhang91 1
  • question about the offset

    question about the offset

    Thanks for your work!

    The implementation of this code inspired me. But the calculation of offset here is confusing. Although this issue (https://github.com/ShoufaChen/CycleMLP/issues/10) has asked similar questions, I haven't found a reasonable explanation.

    https://github.com/ShoufaChen/CycleMLP/blob/2f76a1f6e3cc6672143fdac46e3db5f9a7341253/cycle_mlp.py#L127-L136

    kernel_size = (1, 3)
    start_idx = (kernel_size[0] * kernel_size[1]) // 2
    for i in range(num_channels):
        offset[0, 2 * i + 0, 0, 0] = 0
        # relative offset
        offset[0, 2 * i + 1, 0, 0] = (i + start_idx) % kernel_size[1] - (kernel_size[1] // 2)
    offset.reshape(num_channels, 2)
    
    tensor([[ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.],
            [ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.]])
    

    the results are different with the figure in paper:

    image

    Some codes for verification:

    import torch
    from torchvision.ops import deform_conv2d
    
    num_channels = 6
    
    data = torch.arange(1, 6).reshape(1, 1, 1, 5).expand(-1, num_channels, -1, -1)
    data
    """
    tensor([[[[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]]]])
    """
    
    weight = torch.eye(num_channels).reshape(num_channels, num_channels, 1, 1)
    weight.reshape(num_channels, num_channels)
    """
    tensor([[1., 0., 0., 0., 0., 0.],
            [0., 1., 0., 0., 0., 0.],
            [0., 0., 1., 0., 0., 0.],
            [0., 0., 0., 1., 0., 0.],
            [0., 0., 0., 0., 1., 0.],
            [0., 0., 0., 0., 0., 1.]])
    """
    
    offset = torch.empty(1, 2 * num_channels * 1 * 1, 1, 1)
    kernel_size = (1, 3)
    start_idx = (kernel_size[0] * kernel_size[1]) // 2
    for i in range(num_channels):
        offset[0, 2 * i + 0, 0, 0] = 0
        # relative offset
        offset[0, 2 * i + 1, 0, 0] = (
            (i + start_idx) % kernel_size[1] - (kernel_size[1] // 2)
        )
    offset.reshape(num_channels, 2)
    """
    tensor([[ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.],
            [ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.]])
    """
    
    deform_conv2d(
        data.float(), 
        offset=offset.expand(-1, -1, -1, 5).float(), 
        weight=weight.float(), 
        bias=None,
    )
    """
    tensor([[[[1., 2., 3., 4., 5.]],
             [[2., 3., 4., 5., 0.]],
             [[0., 1., 2., 3., 4.]],
             [[1., 2., 3., 4., 5.]],
             [[2., 3., 4., 5., 0.]],
             [[0., 1., 2., 3., 4.]]]])
    """
    
    opened by lartpang 1
  • question about the offset

    question about the offset

    Hi, thank you very much for your excellent work. In Fig.4 of your paper, you show the pseudo-kernel when kernel size is 1x3. But I when I find that function "gen_offset" does not generate the same offset as Fig.4. The offset it generates is "0,1,0,-1,0,0,0,1..." instead of "0,1,0,-1,0,1,0,-1', which is shown in Fig.4. So could you please tell me the reason? image image

    opened by linjing7 1
  • About

    About "crop_pct"

    Hi, thanks for your great work and code. I wonder the parameter crop_pct actually works in which part of code. When I go throught the timm, I can't find out how this crop_pct is loaded.

    opened by ggjy 1
  • How to deploy CycleMLP-T for training?

    How to deploy CycleMLP-T for training?

    Thank you very much for such a wonderful work!

    After learning the cycle_mlp source code in the repository, I am very confused to deploy CycleMLP Block based on Swin Transformer. Is it convenient for you to release swin-based CycleMLP? Looking forward to your reply, Thanks!

    opened by Pak287 0
Owner
Shoufa Chen
Shoufa Chen
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
CAUSE: Causality from AttribUtions on Sequence of Events

CAUSE: Causality from AttribUtions on Sequence of Events

Wei Zhang 21 Dec 01, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
[CVPR 2021] MiVOS - Scribble to Mask module

MiVOS (CVPR 2021) - Scribble To Mask Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] A simplistic network that turns scri

Rex Cheng 65 Dec 22, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023