EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

Related tags

Deep LearningMADE
Overview

MADE (Multi-Adapter Dataset Experts)

This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the paper Single-dataset Experts for Multi-dataset Question Answering.

MADE combines a shared Transformer with a collection of adapters that are specialized to different reading comprehension datasets. See our paper for details.

Quick links

Requirements

The code uses Python 3.8, PyTorch, and the adapter-transformers library. Install the requirements with:

pip install -r requirements.txt

Download the data

You can download the datasets used in the paper from the repository for the MRQA 2019 shared task.

The datasets should be stored in directories ending with train or dev. For example, download the in-domain training datasets to a directory called data/train/ and download the in-domain development datasets to data/dev/.

For zero-shot and few-shot experiments, download the MRQA out-of-domain development datasets to a separate directory and split them into training and development splits using scripts/split_datasets.py. For example, download the datasets to data/transfer/ and run

ls data/transfer/* -1 | xargs -l python scripts/split_datasets.py

Use the default random seed (13) to replicate the splits used in the paper.

Download the trained models

The trained models are stored on the HuggingFace model hub at this URL: https://huggingface.co/princeton-nlp/MADE. All of the models are based on the RoBERTa-base model. They are:

To download just the MADE Transformer and adapters:

mkdir made_transformer
wget https://huggingface.co/princeton-nlp/MADE/resolve/main/made_transformer/model.pt -O made_transformer/model.pt

mkdir made_tuned_adapters
for d in SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions; do
  mkdir "made_tuned_adapters/${d}"
  wget "https://huggingface.co/princeton-nlp/MADE/resolve/main/made_tuned_adapters/${d}/model.pt" -O "made_tuned_adapters/${d}/model.pt"
done;

You can download all of the models at once by cloning the repository (first installing Git LFS):

git lfs install
git clone https://huggingface.co/princeton-nlp/MADE
mv MADE models

Run the model

The scripts in scripts/train/ and scripts/transfer/ provide examples of how to run the code. For more details, see the descriptions of the command line flags in run.py.

Train

You can use the scripts in scripts/train/ to train models on the MRQA datasets. For example, to train MADE:

./scripts/train/made_training.sh

And to tune the MADE adapters separately on individual datasets:

for d in SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions; do
  ./scripts/train/made_adapter_tuning.sh $d
done;

See run.py for details about the command line arguments.

Evaluate

A single fine-tuned model:

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from multi_dataset_ft \
    --output_dir output/zero_shot/multi_dataset_ft

An individual MADE adapter (e.g. SQuAD):

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from made_transformer \
    --load_adapters_from made_tuned_adapters \
    --adapter \
    --adapter_name SQuAD \
    --output_dir output/zero_shot/made_tuned_adapters/SQuAD

An individual single-dataset adapter (e.g. SQuAD):

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_adapters_from single_dataset_adapters/ \
    --adapter \
    --adapter_name SQuAD \
    --output_dir output/zero_shot/single_dataset_adapters/SQuAD

An ensemble of MADE adapters. This will run a forward pass through every adapter in parallel.

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from made_transformer \
    --load_adapters_from made_tuned_adapters \
    --adapter_names SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions \
    --made \
    --parallel_adapters  \
    --output_dir output/zero_shot/made_ensemble

Averaging the parameters of the MADE adapters:

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from made_transformer \
    --load_adapters_from made_tuned_adapters \
    --adapter_names SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions \
    --adapter \
    --average_adapters  \
    --output_dir output/zero_shot/made_avg

Running UnifiedQA:

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --seq2seq \
    --model_name_or_path allenai/unifiedqa-t5-base \
    --output_dir output/zero_shot/unifiedqa

Transfer

The scripts in scripts/transfer/ provide examples of how to run the few-shot transfer learning experiments described in the paper. For example, the following command will repeat for three random seeds: (1) sample 64 training examples from BioASQ, (2) calculate the zero-shot loss of all the MADE adapters on the training examples, (3) average the adapter parameters in proportion to zero-shot loss, (4) hold out 32 training examples for validation data, (5) train the adapter until performance stops improving on the 32 validation examples, and (6) evaluate the adapter on the full development set.

python run.py \
    --train_on BioASQ \
    --adapter_names SQuAD HotpotQA TriviaQA NewsQA SearchQA NaturalQuestions \
    --made \
    --parallel_made \
    --weighted_average_before_training \
    --adapter_learning_rate 1e-5 \
    --steps 200 \
    --patience 10 \
    --eval_before_training \
    --full_eval_after_training \
    --max_train_examples 64 \
    --few_shot \
    --criterion "loss" \
    --negative_examples \
    --save \
    --seeds 7 19 29 \
    --load_from "made_transformer" \
    --load_adapters_from "made_tuned_adapters" \
    --name "transfer/made_preaverage/BioASQ/64"

Bugs or questions?

If you have any questions related to the code or the paper, feel free to email Dan Friedman ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

@inproceedings{friedman2021single,
   title={Single-dataset Experts for Multi-dataset QA},
   author={Friedman, Dan and Dodge, Ben and Chen, Danqi},
   booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

joisino 20 Aug 21, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Ă–zdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

đź’•YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022